Publication Cover
Applicable Analysis
An International Journal
Volume 103, 2024 - Issue 9
62
Views
1
CrossRef citations to date
0
Altmetric
Research Article

On an incompressible inertial nematic electrolyte model of liquid crystal flow

&
Pages 1553-1586 | Received 27 Jun 2023, Accepted 01 Sep 2023, Published online: 14 Sep 2023

References

  • Calderer MC, Golovaty D, Lavrentovich O, et al. Modeling of nematic electrolytes and nonlinear electroosmosis. SIAM J Appl Math. 2016;76:2260–2285. doi: 10.1137/16M1056225
  • Cai Y, Wang W. Global well-posedness for the three dimensional simplified inertial Ericksen–Leslie systems near equilibrium. J Funct Anal. 2020;279(2):108521. doi: 10.1016/j.jfa.2020.10852138 pp.
  • Huang JX, Jiang N, Luo Y-L, et al. Small data global regularity for the 3-D Ericksen–Leslie hyperbolic liquid crystal model without kinematic transport. SIAM J Math Anal. 2021;53(1):530–573. doi: 10.1137/20M1322625
  • Jiang N, Luo Y-L. On well-posedness of Ericksen–Leslie's hyperbolic incompressible liquid crystal model. SIAM J Math Anal. 2019;51(1):403–434. doi: 10.1137/18M1167310
  • Amann H, Renardy M. Reaction-diffusion problems in electrolysis. NoDEA Nonlinear Differ Equ Appl. 1994;1:91–117. doi: 10.1007/BF01194040
  • Bothe D, Prüss J. Mass transport through charged membranes. Proceedings of 4th European Conference on Elliptic and Parabolic Problems; 2002. p. 332–342.
  • Jiang N, Luo Y-L, Zhang X. Stability of equilibria to the model for non-isothermal electrokinetics. Commun Math Sci. 2021;19(3):687–720. doi: 10.4310/CMS.2021.v19.n3.a6
  • Wiedmann J. An electrolysis model and its solutions [PhD-thesis]. University of Zurich; 1997.
  • Hong M-C, Xin Z-P. Global existence of solutions of the liquid crystal flow for the Oseen–Frank model in R2. Adv Math. 2012;231(3-4):1364–1400. doi: 10.1016/j.aim.2012.06.009
  • Huang J-R, Lin F-H, Wang C-Y. Regularity and existence of global solutions to the Ericksen–Leslie system in R2. Commun Math Phys. 2014;331(2):805–850. doi: 10.1007/s00220-014-2079-9
  • Wang M, Wang WD. Global existence of weak solution for the 2-D Ericksen–Leslie system. Calc Var Partial Differ Equ. 2014;51(3-4):915–962. doi: 10.1007/s00526-013-0700-y
  • Wang W, Zhang P-W, Zhang Z-F. Well-posedness of the Ericksen–Leslie system. Arch Ration Mech Anal. 2013;210(3):837–855. doi: 10.1007/s00205-013-0659-z
  • Li J-K, Titi E, Xin Z-P. On the uniqueness of weak solutions to the Ericksen–Leslie liquid crystal model in ℝ2. Math Models Methods Appl Sci. 2016;26(4):803–822. doi:  10.1142/S0218202516500184
  • Feireisl E, Rocca E, Schimperna G, et al. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete Contin Dyn Syst Ser S. 2021;14(1):219–241.
  • De Anna F, Zarnescu A. Global well-posedness and twist-wave solutions for the inertial Qian–Sheng model of liquid crystals. J Differ Equ. 2018;264(2):1080–1118. doi: 10.1016/j.jde.2017.09.031
  • Feireisl E, Rocca E, Schimperna G, et al. On a hyperbolic system arising in liquid crystals modeling. J Hyperbolic Differ Equ. 2018;15(1):15–35. doi: 10.1142/S0219891618500029
  • Lions P-L. Mathematical topics in fluid mechanics: incompressible models, vol. 1. Oxford: Clarendon Press; 1996.
  • Deng C, Li C. Endpoint bilinear estimates and applications to the two-dimensional Poisson–Nernst–Planck system. Nonlinearity. 2013;26:2993–3009. doi: 10.1088/0951-7715/26/11/2993
  • Hsieh C-Y. Global existence of solutions for the Poisson–Nernst–Planck system with steric effects. Nonlinear Anal Real World Appl. 2019;50:34–54. doi: 10.1016/j.nonrwa.2019.04.001
  • Arnold A, Markowich P, Toscani G. On large time asymptotics for drift-diffusion-Poisson systems. Transp Theory Stat Phys. 2000;29:571–581. doi: 10.1080/00411450008205893
  • Biler P, Dolbeault J. Long time behavior of solutions of Nernst–Planck and Debye–Hückel drift-diffusion systems. Ann Henri Poincaré. 2000;1:461–472. doi: 10.1007/s000230050003
  • Aitbayev R, Bates PW, Lu H, et al. Mathematical studies of Poisson–Nernst–Planck model for membrane channels: finite ion size effects without electroneutrality boundary conditions. J Comput Appl Math. 2019;362:510–527. doi: 10.1016/j.cam.2018.10.037
  • Ji L, Liu P, Xu Z, et al. Asymptotic analysis on dielectric boundary effects of modified Poisson–Nernst–Planck equations. SIAM J Appl Math. 2018;78(3):1802–1822. doi: 10.1137/18M1167218
  • Liu P, Wu S, Liu C. Non-isothermal electrokinetics: energetic variational approach. Commun Math Sci. 2018;16(5):1451–1463. doi: 10.4310/CMS.2018.v16.n5.a13
  • Hsieh C-Y, Lin T-C, Liu C, et al. Global existence of the non-isothermal Poisson–Nernst–Planck–Fourier system. J Differ Equ. 2020;269(9):7287–7310. doi: 10.1016/j.jde.2020.05.037
  • Cheng F, Jiang N, Luo Y-L. On dissipative solutions to a simplified hyperbolic Ericksen–Leslie system of liquid crystals. Commun Math Sci. 2021;19(1):175–192. doi: 10.4310/CMS.2021.v19.n1.a7
  • Huang JX, Jiang N, Luo Y-L, et al. Small data global regularity for simplified 3-D Ericksen–Leslie's compressible hyperbolic liquid crystal model, arXiv:1905.04884.
  • Jiang N, Luo Y-L, Tang Sj.. On well-posedness of Ericksen–Leslie's parabolic-hyperbolic liquid crystal model in compressible flow. Math Models Methods Appl Sci. 2019;29(1):121–183. doi: 10.1142/S0218202519500052
  • Ma YJ. Global well-posedness to incompressible non-inertial Qian–Sheng model. Discrete Contin Dyn Syst. 2020;40(7):4479–4496. doi: 10.3934/dcds.2020187
  • Jiang N, Luo Y-L, Ma YJ, et al. Entropy inequality and energy dissipation of inertial Qian–Sheng model for nematic liquid crystals. J Hyperbolic Differ Equ. 2021;18(1):221–256. doi: 10.1142/S0219891621500065
  • Luo Y-L, Ma YJ. Low mach number limit for the compressible inertial Qian–Sheng model of liquid crystals: convergence for classical solutions. Discrete Contin Dyn Syst. 2021;41(2):921–966. doi: 10.3934/dcds.2020304
  • Jiang N, Luo Y-L. The zero inertia limit from hyperbolic to parabolic Ericksen–Leslie system of liquid crystal flow. J Funct Anal. 2022;282(1):109280. doi: 10.1016/j.jfa.2021.109280
  • Tovkach OM, Conklin C, Calderer MC, et al. Q-tensor model for electrokinetics in nematic liquid crystals. Phys Rev Fluids. 2017;2:053302. doi: 10.1103/PhysRevFluids.2.053302

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.