0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

H2-solutions for an Ostrosky–Hunter type equation

ORCID Icon &
Received 17 Mar 2023, Accepted 17 Jul 2024, Published online: 26 Jul 2024

References

  • Grimshaw R, Pelinovsky D. Global existence of small-norm solutions in the reduced Ostrovsky equation. Discrete Contin Dyn Syst. 2014;34(2):557–566. doi: 10.3934/dcdsa
  • Parkes EJ. Explicit solutions of the reduced Ostrovsky equation. Chaos Solitons Fractals. 2007;31(3):602–610. doi: 10.1016/j.chaos.2005.10.028
  • Stepanyants YA. On stationary solutions of the reduced Ostrovsky equation: periodic waves, compactons and compound solitons. Chaos Solitons Fractals. 2006;28(1):193–204. doi: 10.1016/j.chaos.2005.05.020
  • Boyd JP. Ostrovsky and Hunter's generic wave equation for weakly dispersive waves: matched asymptotic and pseudospectral study of the paraboloidal travelling waves (corner and near-corner waves). Eur J Appl Math. 2005;16(1):65–81. doi: 10.1017/S0956792504005625
  • Hunter JK, Tan KP. Weakly dispersive short waves. In Waves and stability in continuous media. In: Proceedings of the 4th biannual meeting, held in Taormina, Italy; 1987 Oct 5–10. Commenda di Rende: EditEl – Editoria Elettronica; 1989. p. 179–209.
  • Hunter JK. Numerical solutions of some nonlinear dispersive wave equations. Computational solution of nonlinear systems of equations. In: Proc. SIAM-AMS Summer Semin., Ft. Collins/CO (USA) 1988, Lect. Appl. Math. 26; 1990. p. 301–316.
  • Morrison AJ, Parkes EJ. The N-soliton solution of the modified generalised Vakhnenko equation (a new nonlinear evolution equation). Chaos Solit Fractals. 2003;16(1):13–26. doi: 10.1016/S0960-0779(02)00314-4
  • Vakhnenko VO, Parkes EJ. The calculation of multi-soliton solutions of the Vakhnenko equation by the inverse scattering method. Chaos Solitons Fractals. 2002;13(9):1819–1826. doi: 10.1016/S0960-0779(01)00200-4
  • di Ruvo L. Discontinuous solutions for the Ostrovsky–Hunter equation and two phase flows [PhD thesis]. Bari, Italy: University of Bari; 2013.
  • Clarke J. Lectures on plane waves in reacting gases. Ann Phys (Paris). 1984;9(2):211–306.
  • Iasnikov G, Belousov V. Effective thermodynamic functions of a gas with solid particles. Inzh Fiz Zh. 1978;34:1085–1089.
  • Vakhnenko VA. Solitons in a nonlinear model medium. J Phys A Math Gen. 1992;25(15):4181–4187. doi: 10.1088/0305-4470/25/15/025
  • Geyer A, Pelinovsky D. Linear instability and uniqueness of the peaked periodic wave in the reduced Ostrovsky equation. SIAM J Math Anal. 2019;51(2):1188–1208. doi: 10.1137/18M117978X
  • Coclite GM, di Ruvo L. Oleinik type estimates for the Ostrovsky-Hunter equation. J Math Anal Appl. 2015;423(1):162–190. doi: 10.1016/j.jmaa.2014.09.033
  • Coclite GM, di Ruvo L, Karlsen KH. Some wellposedness results for the Ostrovsky-Hunter equation. In Hyperbolic conservation laws and related analysis with applications. Selected papers based on the presentations at the workshop at the International Centre for Mathematical Sciences (ICMS) Edinburgh, UK, 2011 Sept 19–23; Berlin: Springer, 2014. p. 143–159.
  • Coclite GM, di Ruvo L. Well-posedness of bounded solutions of the non-homogeneous initial-boundary value problem for the Ostrovsky-Hunter equation. J Hyperbolic Differ Equ. 2015;12(2):221–248. doi: 10.1142/S021989161550006X
  • Coclite GM, di Ruvo L. A note on the non-homogeneous initial boundary problem for an Ostrovsky-Hunter type equation. Discrete Contin Dyn Syst Ser S. 2020;13(12):3357–3389.
  • Coclite GM, di Ruvo L, Karlsen KH. The initial-boundary-value problem for an Ostrovsky-Hunter type equation. In: Non-linear partial differential equations, mathematical physics, and stochastic analysis. The Helge Holden anniversary volume on the occasion of his 60th birthday. Based on the presentations at the conference ‘Non-linear PDEs, mathematical physics and stochastic analysis’, NTNU, Trondheim, Norway; 2016 July 4–7. Zürich: European Mathematical Society (EMS); 2018. p. 97–109.
  • Ridder J, Ruf AM. A convergent finite difference scheme for the Ostrovsky-Hunter equation with Dirichlet boundary conditions. BIT. 2019;59(3):775–796. doi: 10.1007/s10543-019-00746-7
  • Coclite GM, di Ruvo L. Dispersive and diffusive limits for Ostrovsky-Hunter type equations. NoDEA Nonlinear Differ Equ Appl. 2015;22(6):1733–1763. doi: 10.1007/s00030-015-0342-1
  • Ostrovsky L. Nonlinear internal waves in a rotating ocean. Oceanology. 1978;18:119–125.
  • Benilov ES. On the surface waves in a shallow channel with an uneven bottom. Stud Appl Math. 1992;87(1):1–14. doi: 10.1002/sapm.v87.1
  • Galkin VM, Stepanyants YA. On the existence of stationary solitary waves in a rotating fluid. J Appl Math Mech. 1991;55(6):939–943. doi: 10.1016/0021-8928(91)90148-N
  • Gilman OA, Grimshaw R, Stepanyants YA. Approximate analytical and numerical solutions of the stationary Ostrovsky equation. Stud Appl Math. 1995;95(1):115–126. doi: 10.1002/sapm.v95.1
  • Gui G, Liu Y. On the Cauchy problem for the Ostrovsky equation with positive dispersion. Commun Partial Differ Equ. 2007;32(12):1895–1916. doi: 10.1080/03605300600987314
  • Huo Z, Jia Y. Low-regularity solutions for the Ostrovsky equation. Proc Edinb Math Soc II Ser. 2006;49(1):87–100. doi: 10.1017/S0013091504000938
  • Isaza P, Mejía J. Cauchy problem for the Ostrovsky equation in spaces of low regularity. J Differ Equ. 2006;230(2):661–681. doi: 10.1016/j.jde.2006.04.007
  • Isaza P, Mejía J. Global Cauchy problem for the Ostrovsky equation. Nonlinear Anal Theory Methods Appl Ser A Theory Methods. 2007;67(5):1482–1503. doi: 10.1016/j.na.2006.07.031
  • Isaza P, Mejía J. Local well-posedness and quantitative ill-posedness for the Ostrovsky equation. Nonlinear Anal Theory Methods Appl Ser A Theory Methods. 2009;70(6):2306–2316. doi: 10.1016/j.na.2008.03.010
  • Isaza P, Mejía J. On the support of solutions to the Ostrovsky equation with negative dispersion. J Differ Equ. 2009;247(6):1851–1865. doi: 10.1016/j.jde.2009.03.022
  • Isaza P, Mejía J. On the support of solutions to the Ostrovsky equation with positive dispersion. Nonlinear Anal Theory Methods Appl Ser A Theory Methods. 2010;72(11):4016–4029. doi: 10.1016/j.na.2010.01.033
  • Isaza P, Mejía J. Global Cauchy problem for the Ostrovsky equation. Nonlinear Anal Theory Methods Appl. 2007;67(5):1482–1503. doi: 10.1016/j.na.2006.07.031
  • Li Y, Huang J, Yan W. The Cauchy problem for the Ostrovsky equation with negative dispersion at the critical regularity. J Differ Equ. 2015;259(4):1379–1408. doi: 10.1016/j.jde.2015.03.007
  • Linares F, Milanés A. Local and global well-posedness for the Ostrovsky equation. J Differ Equ. 2006;222(2):325–340. doi: 10.1016/j.jde.2005.07.023
  • Tsugawa K. Well-posedness and weak rotation limit for the Ostrovsky equation. J Differ Equ. 2009;247(12):3163–3180. doi: 10.1016/j.jde.2009.09.009
  • Wang H, Cui S. Well-posedness of the Cauchy problem of Ostrovsky equation in anisotropic Sobolev spaces. J Math Anal Appl. 2007;327(1):88–100. doi: 10.1016/j.jmaa.2006.03.091
  • Wang J, Yan W. The Cauchy problem for quadratic and cubic Ostrovsky equation with negative dispersion. Nonlinear Anal Real World Appl. 2018;43:283–307. doi: 10.1016/j.nonrwa.2018.03.002
  • Yan W, Li Y, Huang J, et al. The Cauchy problem for the Ostrovsky equation with positive dispersion. NoDEA Nonlinear Differ Equ Appl. 2018;25(3):37. doi: 10.1007/s00030-018-0514-xId/No 22.
  • Yan W, Yang M, Duan J. White noise driven Ostrovsky equation. J Differ Equ. 2019;267(10):5701–5735. doi: 10.1016/j.jde.2019.06.003
  • Zaiter I. Remarks on the Ostrovsky equation. Differ Integral Equ. 2007;20(7):815–840.
  • Levandosky S, Liu Y. Stability of solitary waves of a generalized Ostrovsky equation. SIAM J Math Anal. 2006;38(3):985–1011. doi: 10.1137/050638722
  • Liu Y. On the stability of solitary waves for the Ostrovsky equation. Q Appl Math. 2007;65(3):571–589. doi: 10.1090/qam/2007-65-03
  • Liu Y, Varlamov V. Stability of solitary waves and weak rotation limit for the Ostrovsky equation. J Differ Equ. 2004;203(1):159–183. doi: 10.1016/j.jde.2004.03.026
  • Levandovsky S, Liu Y. Stability and weak rotation limit of solitary waves of the Ostrovsky equation. Discrete Contin Dyn Syst Ser B. 2007;7(4):793–806.
  • LeFloch PG, Natalini R. Conservation laws with vanishing nonlinear diffusion and dispersion. Nonlinear Anal Theory Methods Appl. 1999;36(2):213–230. doi: 10.1016/S0362-546X(98)00012-1
  • Schonbek ME. Convergence of solutions to nonlinear dispersive equations. Commun Partial Differ Equ. 1982;7:959–1000. doi: 10.1080/03605308208820242
  • Coclite GM, di Ruvo L. Convergence of the Ostrovsky equation to the Ostrovsky-Hunter one. J Differ Equ. 2014;256(9):3245–3277. doi: 10.1016/j.jde.2014.02.001
  • Coclite GM, di Ruvo L. On the solutions for an Ostrovsky type equation. Nonlinear Anal Real World Appl. 2020;55:103141. doi: 10.1016/j.nonrwa.2020.103141Id/No 103141.
  • Zhang Z, Huang J. Well-posedness and unique continuation property for the generalized Ostrovsky equation with low regularity. Math Methods Appl Sci. 2016;39(10):2488–2513. doi: 10.1002/mma.v39.10
  • Zhang Z, Huang J, Sun M. Blow-up phenomena for the weakly dissipative Dullin-Gottwald-Holm equation revisited. J Math Phys. 2015;56(9):092701. doi: 10.1063/1.4930198
  • Zhang Z, Li L, Fang C, et al. A new blow-up criterion for the N−abc family of Camassa-Holm type equation with both dissipation and dispersion. Open Math. 2020;18:194–203. doi: 10.1515/math-2020-0012
  • Zhang Z, Liu Z, Deng Y, et al. Global well-posedness and infinite propagation speed for the N−abc family of Camassa-Holm type equation with both dissipation and dispersion. J Math Phys. 2020;61(7):071502. doi: 10.1063/5.0010374
  • Zhang Z, Liu Z, Deng Y, et al. Long time behavior of solutions to the damped forced generalized Ostrovsky equation below the energy space. Proc Am Math Soc. 2021;149(4):1527–1542. doi: 10.1090/proc/2021-149-04
  • Kozlov SA, Sazonov SV. Nonlinear propagation of optical pulses of a few oscillations duration in dielectric media. J Exp Theor Phys. 1997;84(2):221–228. doi: 10.1134/1.558109
  • Schäfer T, Wayne C. Propagation of ultra-short optical pulses in cubic nonlinear media. Phys D Nonlinear Phenom. 2004;196(1-2):90–105. doi: 10.1016/j.physd.2004.04.007
  • Amiranashvili S, Vladimirov AG, Bandelow U. Solitary-wave solutions for few-cycle optical pulses. Phys Rev A. 2008;77:063821. doi: 10.1103/PhysRevA.77.063821
  • Amiranashvili S, Vladimirov AG, Bandelow U. A model equation for ultrashort optical pulses around the zero dispersion frequency. Eur Phys J D. 2010;58(2):219–226. doi: 10.1140/epjd/e2010-00010-3
  • Coclite GM, di Ruvo L. Discontinuous solutions for the generalized short pulse equation. Evol Equ Control Theory. 2019;8(4):737–753. doi: 10.3934/eect.2019036
  • Leblond H, Mihalache D. Few-optical-cycle solitons: modified Korteweg–de Vries sine-Gordon equation versus other non-slowly-varying-envelope-approximation models. Phys Rev A. 2009;79:063835. doi: 10.1103/PhysRevA.79.063835
  • Leblond H, Mihalache D. Models of few optical cycle solitons beyond the slowly varying envelope approximation. Phys Rep. 2013;523(2):61–126. doi: 10.1016/j.physrep.2012.10.006
  • Leblond H, Sanchez F. Models for optical solitons in the two-cycle regime. Phys Rev A. 2003;67:013804. doi: 10.1103/PhysRevA.67.013804
  • Beals R, Rabelo M, Tenenblat K. Bäcklund transformations and inverse scattering solutions for some pseudospherical surface equations. Stud Appl Math. 1989;81(2):125–151. doi: 10.1002/sapm.v81.2
  • Rabelo ML. On equations which describe pseudospherical surfaces. Stud Appl Math. 1989;81(3):221–248. doi: 10.1002/sapm.v81.3
  • Sakovich A, Sakovich S. On transformations of the Rabelo equations. SIGMA, Symmetry Integr Geom Methods Appl. 2007;3:086. 8 p.
  • Tsitsas N, Horikis T, Shen Y, et al. Short pulse equations and localized structures in frequency band gaps of nonlinear metamaterials. Phys Lett A. 2010;374(11-12):1384–1388. doi: 10.1016/j.physleta.2010.01.004
  • Nikitenkova S, Stepanyants Y, Chikhladze L. Solutions of the modified Ostrovskii equation with cubic non-linearity. J Appl Math Mech. 2000;64(2):267–274. doi: 10.1016/S0021-8928(00)00048-4
  • Lattanzio C, Marcati P. Global well-posedness and relaxation limits of a model for radiating gas. J Differ Equ. 2003;190(2):439–465. doi: 10.1016/S0022-0396(02)00158-4
  • Serre D. L1-stability of constants in a model for radiating gases. Commun Math Sci. 2003;1(1):197–205. doi: 10.4310/CMS.2003.v1.n1.a12
  • Coclite GM, di Ruvo L. Discontinuous solutions for the short-pulse master mode-locking equation. AIMS Math. 2019;4(3):437–462. doi: 10.3934/math.2019.3.437
  • Farnum E, Kutz J. Dynamics of a low-dimensional model for short pulse mode locking. Photonics. 2015;2(3):865–882. doi: 10.3390/photonics2030865
  • Farnum ED, Kutz JN. Master mode-locking theory for few-femtosecond pulses. Opt Lett. 2010;35(18):3033–3035. doi: 10.1364/OL.35.003033
  • Farnum ED, Kutz JN. Short-pulse perturbation theory. J Opt Soc Am B. 2013;30(8):2191–2198. doi: 10.1364/JOSAB.30.002191
  • Pelinovsky D, Schneider G. Rigorous justification of the short-pulse equation. NoDEA Nonlinear Differ Equ Appl. 2013;20(3):1277–1294. doi: 10.1007/s00030-012-0208-8
  • Davidson M. Continuity properties of the solution map for the generalized reduced Ostrovsky equation. J Differ Equ. 2012;252(6):3797–3815. doi: 10.1016/j.jde.2011.11.013
  • Pelinovsky D, Sakovich A. Global well-posedness of the short-pulse and sine-Gordon equations in energy space. Commun Partial Differ Equ. 2010;35(4):613–629. doi: 10.1080/03605300903509104
  • Stefanov A, Shen Y, Kevrekidis PG. Well-posedness and small data scattering for the generalized Ostrovsky equation. J Differ Equ. 2010;249(10):2600–2617. doi: 10.1016/j.jde.2010.05.015
  • Coclite GM, di Ruvo L. Well-posedness results for the short pulse equation. Z Angew Math Phys. 2015;66(4):1529–1557. doi: 10.1007/s00033-014-0478-6
  • Coclite GM, di Ruvo L. Well-posedness and dispersive/diffusive limit of a generalized Ostrovsky-Hunter equation. Milan J Math. 2018;86(1):31–51. doi: 10.1007/s00032-018-0278-0
  • Coclite GM, di Ruvo L. Wellposedness of bounded solutions of the non-homogeneous initial boundary for the short pulse equation. Boll Unione Mat Ital. 2015;8(1):31–44. doi: 10.1007/s40574-015-0023-3
  • Coclite GM, Ridder J, Risebro NH. A convergent finite difference scheme for the Ostrovsky-Hunter equation on a bounded domain. BIT. 2017;57(1):93–122. doi: 10.1007/s10543-016-0625-x
  • Bespalov VG, Kozlov SA, Shpolyanski YA. Method for analyzing the propagation dynamics of femtosecond pulses with a continuum spectrum in transparent optical media. J Opt Technol. 2000;67(4):303. doi: 10.1364/JOT.67.000303
  • Bespalov VG, Kozlov SA, Shpolyanskii YA, et al. Spectral superbroadening of high-power femtosecond laser pulses and their time compression down to one period of the light field. J Opt Technol. 1998;65(10):823–825.
  • Bespalov VG, Kozlov SA, Shpolyanskiy YA, et al. Simplified field wave equations for the nonlinear propagation of extremely short light pulses. Phys Rev A. 2002;66:013811. doi: 10.1103/PhysRevA.66.013811
  • Melnik MV, Tcypkin AN, Kozlov SA. Temporal coherence of optical supercontinuum. Rom J Phys. 2018;63:203.
  • Shpolyanskiy Y, Belov D, Bakhtin M, et al. Analytic study of continuum spectrum pulse dynamics in optical waveguides. Appl Phys B. 2003;77(2-3):349–355. doi: 10.1007/s00340-003-1248-x
  • Coclite GM, di Ruvo L. On the initial-boundary value problem for a non-local elliptic-hyperbolic system related to the short pulse equation. SN Partial Differ Equ Appl. 2022;3(6):40. doi: 10.1007/s42985-022-00208-wId/No 79.
  • Wang L, Li F. Well-posedness and blow-up for a non-local elliptic-hyperbolic system related to short-pulse equation. Z Angew Math Phys. 2022;73(1):17. doi: 10.1007/s00033-021-01666-9Id/No 182.
  • Coclite GM, di Ruvo L. A non-local elliptic-hyperbolic system related to the short pulse equation. Nonlinear Anal Theory Methods Appl Ser A Theory Methods. 2020;190:111606. doi: 10.1016/j.na.2019.111606Id/No 111606.
  • Coclite GM, di Ruvo L. A non-local regularization of the short pulse equation. Minimax Theory Appl. 2021;6(2):295–310.
  • Costanzino N, Manukian V, Jones CKRT. Solitary waves of the regularized short pulse and Ostrovsky equations. SIAM J Math Anal. 2009;41(5):2088–2106. doi: 10.1137/080734327
  • Yan W, Zhang Q, Zhao L, et al. The local well-posedness and the weak rotation limit for the cubic Ostrovsky equation. Appl Math Lett. 2019;96:147–152. doi: 10.1016/j.aml.2019.04.017
  • Liu Y, Pelinovsky D, Sakovich A. Wave breaking in the short-pulse equation. Dyn Partial Differ Equ. 2009;6(4):291–310. doi: 10.4310/DPDE.2009.v6.n4.a1
  • Shen Y, Horikis TP, Kevrekidis PG, et al. Traveling waves of the regularized short pulse equation. J Phys A Math Theor. 2014;47(31):315204. doi: 10.1088/1751-8113/47/31/315204Id/No 315204.
  • Coclite GM, di Ruvo L. Convergence of the regularized short pulse equation to the short pulse one. Math Nachr. 2018;291(5-6):774–792. doi: 10.1002/mana.v291.5-6
  • Coclite GM, di Ruvo L. Well-posedness of the Ostrovsky-Hunter equation under the combined effects of dissipation and short-wave dispersion. J Evol Equ. 2016;16(2):365–389. doi: 10.1007/s00028-015-0306-2
  • Coclite GM, Holden H, Karlsen KH. Wellposedness for a parabolic-elliptic system. Discrete Contin Dyn Syst. 2005;13(3):659–682. doi: 10.3934/dcds.2005.13.659
  • Coclite GM, di Ruvo L. On classical solutions for the fifth-order short pulse equation. Math Methods Appl Sci. 2021;44(11):8814–8837. doi: 10.1002/mma.v44.11
  • Coclite GM, di Ruvo L. Well-posedness of the classical solutions for a Kawahara-Korteweg-de Vries-type equation. J Evol Equ. 2021;21(1):625–651. doi: 10.1007/s00028-020-00594-x
  • Coclite GM, di Ruvo L. On the solutions for a Benney-Lin type equation. Discrete Contin Dyn Syst Ser B. 2022;27(11):6865–6883. doi: 10.3934/dcdsb.2022024

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.