3,964
Views
62
CrossRef citations to date
0
Altmetric
Methods, Models, and GIS

Space–Time Analysis: Concepts, Quantitative Methods, and Future Directions

, , , , , & show all

References

  • Albert Einstein Site Online. 2012. Albert Einstein quotes. http://www.alberteinsteinsite.com/quotes/einsteinquotes.html (last accessed 26 December 2014).
  • An, L. 2012. Modeling human decisions in coupled human and natural systems: Review of agent-based models. Ecological Modelling 229:25–36.
  • An, L., and D. G. Brown. 2008. Survival analysis in land change science: Integrating with GIScience to address temporal complexities. Annals of the Association of American Geographers 98 (2): 323–44.
  • An, L., D. G. Brown, J. I. Nassauer, and B. Low. 2011. Variations in development of exurban residential landscapes: Timing, location, and driving forces. Journal of Land Use Science 6 (1): 13–32.
  • An, L., M. Linderman, J. Qi, A. Shortridge, and J. Liu. 2005. Exploring complexity in a human–environment system: An agent-based spatial model for multidisciplinary and multiscale integration. Annals of the Association of American Geographers 95 (1): 54–79.
  • An, L., M.-H. Tsou, B. Spitzberg, J. M. Gawron, and D. K. Gupta. Forthcoming. Latent trajectory models for space–time analysis: An application in deciphering spatial panel data. Geographical Analysis.
  • An, L., A. Zvoleff, J. Liu, and W. Axinn. 2014. Agent based modeling in coupled human and natural systems (CHANS): Lessons from a comparative analysis. Annals of Association of American Geographers 104 (4): 723–45.
  • Anselin, L. 1995. Local indicators of spatial association—LISA. Geographical analysis 27 (2): 93–115.
  • ———. 2003. Spatial externalities, spatial multipliers, and spatial econometrics. International Regional Science Review 26 (2): 153–66.
  • Apple Computer. 2000. Object-oriented programming and the Objective-C language. http://cdn.preterhuman.net/texts/manuals/ObjC.pdf (last accessed 27 May 2014).
  • Armstrong, M. P. 1988. Temporality in spatial databases. In GIS/LIS 88 Proceedings: Accessing the world, 880–889. Falls Church, VA: American Society for Photogrammetry and Remote Sensing.
  • Ashtekar, A. 2006. Space and time: From antiquity to Einstein and beyond. Resonance 11 (9): 4–19.
  • Assunção, R. M., I. A. Reis, and C. D. L. Oliveira. 2001. Diffusion and prediction of Leishmaniasis in a large metropolitan area in Brazil with a Bayesian space–time model. Statistics in Medicine 20 (15): 2319–35.
  • Baer, L. D., and D. R. Butler. 2000. Space–time modeling of grizzly bears. The Geographic Review 90 (2): 206–21.
  • Bala, V., and G. Sorger. 2001. A spatial-temporal model of human capital accumulation. Journal of Economic Theory 96:153–79.
  • Baltagi, B. H. 2005. Econometric analysis of panel data. Chichester, UK: Wiley.
  • Biggeri, A., and M. Martuzzi. 2003. Preface (Special issue). Environmetrics 14:429–30.
  • Bollen, K. A., and P. J. Curran. 2006. Latent curve models: A structural equation perspective. Hoboken, NJ: Wiley.
  • Bothwell, J., and M. Yuan. 2010. Apply concepts of fluid kinematics to represent continuous space–time fields in temporal GIS. Annals of GIS 16 (1): 27–41.
  • Brown, D. G., S. Page, R. Riolo, M. Zellner, and W. Rand. 2005. Path dependence and the validation of agent-based spatial models of land use. International Journal of Geographical Information Science 19 (2): 153–74.
  • Brown, D. G., B. C. Pijanowski, and J. D. Duh. 2000. Modeling the relationships between land use and land cover on private lands in the Upper Midwest, USA. Journal of Environmental Management 59 (4): 247–47.
  • Brown, D. G., D. T. Robinson, L. An, J. I. Nassauer, M. Zellner, W. Rand, R. Riolo, S. E. Page, B. Low, and Z. Wang. 2008. Exurbia from the bottom-up: Confronting empirical challenges to characterizing a complex system. Geoforum 39 (2): 805–18.
  • Browne, W., and J. Rasbash. 2004. Multilevel modeling. In The handbook of data analysis, 459–79. London: Sage.
  • Cao, K., B. Huang, M. Li, and W. Li. 2014. Calibrating a cellular automata model for understanding rural–urban land conversion: A Pareto front-based multiobjective optimization approach. International Journal of Geographical Information Science 28 (5): 1028–46.
  • Chen, J., S.-L. Shaw, H. Yu, F. Lu, Y. Chai, and Q. Jia. 2011. Exploratory data analysis of activity diary data: A space–time GIS approach. Journal of Transport Geography 19 (3): 394–404.
  • Cheng, T., J. Wang, and X. Li. 2011. A hybrid framework for space–time modeling of environmental data. Geographical Analysis 43 (2): 188–210.
  • Chun, Y. 2014. Analyzing space–time crime incidents using eigenvector spatial filtering: An application to vehicle burglary. Geographical Analysis 46 (2): 165–84.
  • Chun, Y., and D. A. Griffith. 2011. Modeling network autocorrelation in space–time migration flows data: An eigenvectors spatial filtering approach. Annals of the Association of American Geographers 101 (3): 523–36.
  • Clarke, K. C., S. Hoppen, and L. Gaydos. 1997. A self-modifying cellular automaton model of historical urbanization in the San Francisco Bay area. Environment and Planning B: Planning & Design 24 (2): 247–61.
  • Cliff, A. D., P. Haggett, J. K. Ord, K. A. Bassett, and R. B. Davies. 1975. Elements of spatial structure: A quantitative approach. New York: Cambridge University Press.
  • Couclelis, H. 1999. Space, time, geography. Geographical Information Systems 1:29–38.
  • ———. 2010. Ontologies of geographic information. International Journal of Geographical Information Science 24 (12): 1785–1809.
  • Cresswell, T. 2013. Geographic thought: A critical introduction. West Sussex, UK: Wiley-Blackwell.
  • Dainton, B. 2001. Time and space. London: Cambridge University Press. http://journals.cambridge.org/production/action/cjoGetFulltext?fulltextid=7026744 (last accessed 6 March 2014).
  • De Hevia, M. D., V. Izard, A. Coubart, E. S. Spelke, and A. Streri. 2014. Representations of space, time, and number in neonates. Proceedings of the National Academy of Sciences 111 (13): 4809–13.
  • Delmelle, E., C. Dony, I. Casas, M. Jia, and W. Tang. 2014. Visualizing the impact of space–time uncertainties on dengue fever patterns. International Journal of Geographical Information Science 28 (5): 1107–27.
  • Dijst, M. 2013. Space–time integration in a dynamic urbanizing world: Current status and future prospects in geography and GIScience. Annals of the Association of American Geographers 103 (5): 1058–61.
  • Dodge, S., P. Laube, and R. Weibel. 2012. Movement similarity assessment using symbolic representation of trajectories. International Journal of Geographical Information Science 26 (9): 1563–88.
  • Doherty, P. J., Q. Guo, W. Li, and J. Doke. 2014. Space–time analyses for forecasting future incident occurrence: A case study from Yosemite National Park using the presence and background learning algorithm. International Journal of Geographical Information Science 28 (5): 910–27.
  • Downs, J. A. 2010. Time-geographic density estimation for moving point objects. In Geographic information science, ed. S. I. Fabrikant, T. Reichenbacher, M. van Kreveld, and C. Schlieder, 16–26. Berlin: Springer.
  • Downs, J. A., and M. W. Horner. 2012. Probabilistic potential path trees for visualizing and analyzing vehicle tracking data. Journal of Transport Geography 23:72–80.
  • Downs, J. A., M. W. Horner, G. Hyzer, D. Lamb, and R. Loraamm. 2014. Voxel-based probabilistic space–time prisms for analysing animal movements and habitat use. International Journal of Geographical Information Science 28 (5): 875–90.
  • Dykes, J., A. M. MacEachren, and M.-J. Kraak. 2005. Exploring geovisualization. San Diego, CA: Elsevier.
  • Elhorst, J. P. 2010. Spatial panel data models. In Handbook of applied spatial analysis: Software tools, methods and applications, ed. M. M. Fischer, and A. Getis, 377–407. Berlin: Springer-Verlag.
  • ———. 2012. Dynamic spatial panels: Models, methods, and inferences. Journal of Geographical Systems 14 (1): 5–28.
  • ESRI. 2013. ArcGIS. Redlands, CA: Environmental Systems Research Institute. http://www.esri.com/ (last accessed 17 July 2015).
  • Fischer, M. M., and A. Getis, eds. 2010. Handbook of applied spatial analysis: Software tools, methods, and applications. New York: Springer.
  • Frihida, A., D. J. Marceau, and M. Thériault. 2002. Spatio-temporal object-oriented data model for disaggregate travel behavior. Transactions in GIS 6 (3): 277–94.
  • Furrer, R., R. Knutti, S. R. Sain, D. W. Nychka, and G. A. Meehl. 2007. Spatial patterns of probabilistic temperature change projections from a multivariate Bayesian analysis. Geophysical Research Letters 34 (6): L06711.
  • Gardner, M. 1970. Mathematical games—The fantastic combinations of John Conway's new solitaire game “life.” Scientific American 223:120–23.
  • Goldstein, H. 2011. Multilevel statistical models. 4th ed. West Sussex, UK: Wiley.
  • Goodchild, M. F. 2013. Prospects for a space–time GIS. Annals of the Association of American Geographers 103 (5): 1072–77.
  • Griffith, D. A. 2003. Spatial autocorrelation and spatial filtering. Berlin: Springer.
  • Guo, G., and J. Hipp. 2004. Longitudinal analysis for continuous outcomes. In The handbook of data analysis, ed. M. Hardy, and A. Bryman, 347–68. Los Angeles: Sage.
  • Guttorp, P., W. Meiring, and P. D. Sampson. 1994. A space–time analysis of ground-level ozone data. Environmetrics 5 (3): 241–54.
  • Hagen, A. E. 2003. Fuzzy set approach to assessing similarity of categorical maps. International Journal of Geographical Information Science 17 (3): 235–50.
  • Hägerstraand, T. 1970. What about people in regional science? Papers in Regional Science 24 (1): 7–24.
  • He, C., P. Shi, J. Chen, X. Li, Y. Pan, J. Li, Y. Li, and J. Li. 2005. Developing land use scenario dynamics model by the integration of system dynamics model and cellular automata model. Science in China Series D: Earth Sciences 48 (11): 1979–89.
  • Hinckfuss, I. 1974. The existence of space and time. http://philpapers.org/rec/HINTEO (last accessed 6 March 2014).
  • Iacono, M., D. Levinson, A. El-Geneidy, and R. Wasfi. 2012. A Markov chain model of land use change in the Twin Cities. Paper presented at the 10th International Symposium on Spatial Accuracy Assessment in Natural Resources and Environmental Sciences, Florianópolis Santa Catarina, Brazil.
  • Janiak, A. 2009. Kant's views on space and time. In Stanford encyclopedia of philosophy, ed. E. N. Zalta, U. Nodelman, and C. Allen. http://plato.stanford.edu/entries/kant-spacetime/ (last accessed 26 May 2014).
  • Johnston, R., K. Jones, and M.-H. Jen. 2009. Regional variations in voting at British general elections, 1950—2001: Group-based latent trajectory analysis. Environment and Planning A 41 (3): 598–616.
  • Kamarianakis, Y., and P. Prastacos. 2005. Space–time modeling of traffic flow. Computers & Geosciences 31:119–33.
  • Kim, Y., and M. O'Kelly. 2008. A bootstrap based space–time surveillance model with an application to crime occurrences. Journal of Geographical Systems 10 (2): 141–65.
  • Klein, J. P., and M. L. Moeschberger. 1997. Survival analysis: Techniques for censored and truncated data. New York: Springer-Verlag.
  • Knox, E. G. 1964. The detection of space–time interactions. Applied Statistics 13 (1): 25–30.
  • Kraak, M.-J., and A. Koussoulakou. 2005. A visualization environment for the space–time cube. In Developments in spatial data handling, ed. P. F. Fisher, 189–200. Berlin: Springer.
  • Kulldorff, M. 2001. Prospective time periodic geographical disease surveillance using a scan statistic. Journal of the Royal Statistical Society: Series A (Statistics in Society) 164 (1): 61–72.
  • Kulldorff, M., R. Heffernan, J. Hartman, R. Assuncao, and F. Mostashari. 2005. A space–time permutation scan statistic for disease outbreak detection. PLoS Medicine 2 (3): e59.
  • Kwan, M.-P. 1998. Space–time and integral measures of individual accessibility: A comparative analysis using a point-based framework. Geographical Analysis 30 (3): 191–216.
  • ———. 1999. Gender, the home–work link, and space–time patterns of non-employment activities. Economic Geography 51 (2): 210–27.
  • ———. 2004. GIS methods in time-geographic research: Geocomputation and geovisualization of human activity patterns. Geografiska Annaler: Series B, Human Geography 86 (4): 267–80.
  • ———. 2013. Beyond space (as we knew it): Toward temporally integrated geographies of segregation, health, and accessibility. Annals of the Association of American Geographers 103 (5): 1078–86.
  • Kwan, M., and J. Lee. 2004. Geovisualization of human activity patterns using 3D GIS: A time-geographic approach. In Spatially integrated social science, ed. M. F. Goodchild, and D. G. Janelle, 48–66. New York: Oxford University Press.
  • Kwan, M.-P., and T. Neutens. 2014. Guest editorial: Space–time research in GIScience. International Journal of Geographical Information Science 28 (5): 851–54.
  • Kwan, M.-P., N. Xiao, and G. Ding. 2014. Assessing activity pattern similarity with multidimensional sequence alignment based on a multiobjective optimization evolutionary algorithm. Geographical Analysis 46 (3): 297–320.
  • Laube, P., T. Dennis, P. Forer, and M. Walker. 2007. Movement beyond the snapshot—Dynamic analysis of geospatial lifelines. Computers, Environment and Urban Systems 31:481–501.
  • Laube, P., and R. S. Purves. 2011. How fast is a cow? Cross-scale analysis of movement data. Transactions in GIS 15 (3): 401–18.
  • Lee, C., R. Devillers, and O. Hoeber. 2014. Navigating spatio-temporal data with temporal zoom and pan in a multi-touch environment. International Journal of Geographical Information Science 28 (5): 1128–48.
  • Lee, L., and J. Yu. 2010. Some recent developments in spatial panel data models. Regional Science & Urban Economics 40:255–71.
  • Le Gallo, J. 2004. Space–time analysis of GDP disparities among European regions: A Markov chains approach. International Regional Science Review 27 (2): 138–63.
  • Leibovici, D. G., C. Claramunt, D. L. Guyader, and D. Brossetb. 2014. Local and global spatio-temporal entropy indices based on distance-ratios and co-occurrences distributions. International Journal of Geographical Information Science 28 (5): 1061–84.
  • Lenntorp, B. 1976. Paths in space–time environments: A time-geographic study of movement possibilities of individuals. Lund Studies in Geography Series B Human Geography 44. http://www.popline.org/node/458894 (last accessed 12 March 2014).
  • Levine, N. 2004. Space–time analysis. In CrimeStat III, 9.1–9.42. Houston, TX: Ned Levine and Associates. http://www.icpsr.umich.edu/CrimeStat/files/CrimeStatChapter.9.pdf (last accessed 17 July 2015).
  • Liao, F., S. Rasouli, and H. Timmermans. 2014. Incorporating activity-travel time uncertainty and stochastic space–time prisms in multistate supernetworks for activity-travel scheduling. International Journal of Geographical Information Science 28 (5): 928–45.
  • Liu, J., T. Dietz, S. R. Carpenter, M. Alberti, C. Folke, E. Moran, A. N. Pell, et al. 2007. Complexity of coupled human and natural systems. Science 317 (5844): 1513–16.
  • Liu, X., W. Y. Yan, and J. Y. J. Chow. 2015. Time-geographic relationships between vector fields of activity patterns and transport systems. Journal of Transport Geography 42:22–33.
  • Liu, Y., D. Tong, and X. Liu. 2014. Measuring spatial autocorrelation of vectors. Geographical Analysis. doi:10.1111/gean.12069
  • Long, J. A., and T. A. Nelson. 2013. A review of quantitative methods for movement data. International Journal of Geographical Information Science 27 (2): 292–318.
  • Long, J. A., T. A. Nelson, and F. S. Nathoo. 2014. Toward a kinetic-based probabilistic time geography. International Journal of Geographical Information Science 28 (5): 855–74.
  • Lophaven, S., J. Carstensen, and H. Rootzén. 2004. Space–time modeling of environmental monitoring data. Environment and Ecological Statistics 11:237–56.
  • Mantel, N. 1967. The detection of disease clustering and a generalized regression approach. Cancer Research 27 (2, Part 1): 209–20.
  • Marx, V. 2013. Biology: The big challenges of big data. Nature 498 (7453): 255–60.
  • Massey, D. 1999. Space–time, “science” and the relationship between physical geography and human geography. Transactions of the Institute of British Geographers 24 (3): 261–76.
  • Meentemeyer, V. 1989. Geographical perspectives of space, time, and scale. Landscape Ecology 3 (3–4): 163–73.
  • Mertens, B., and E. F. Lambin. 2000. Land-cover-change trajectories in southern Cameroon. Annals of the Association of American Geographers 90 (3): 467–94.
  • Messina, J. P., and S. J. Walsh. 2001. 2.5D morphogenesis: Modeling landuse and landcover dynamics in the Ecuadorian Amazon. Plant Ecology 156 (1): 75–88.
  • Miller, H. J. 2005. What about people in geographic information science. In Re-presenting geographic information systems, ed. P. Fisher and D. J. Unwin, 215–42. New York: Wiley.
  • Nail, A. J., J. M. Hughes-Oliver, and J. F. Monahan. 2011. Quantifying local creation and regional transport using a hierarchical space–time model of ozone as a function of observed NOx, a latent space–time VOC process, emissions, and meteorology. Journal of Agricultural Biological and Environmental Statistics 16 (1): 17–44.
  • Nakaya, T. 2013. Analytical data transformations in space–time region: Three stories of space–time cube. Annals of the Association of American Geographers 103 (5): 1100–06.
  • National Research Council. 2014. Advancing land change modeling: Opportunities and research requirements. Washington, DC: National Academies Press.
  • Natvig, B., and I. F. Tvete. 2007. Bayesian hierarchical space–time modeling of earthquake data. Methodology and Computing in Applied Probability 9 (1): 89–114.
  • Neutens, T., T. Schwanen, F. Witlox, and P. De Maeyer. 2008. My space or your space? Towards a measure of joint accessibility. Computers, Environment and Urban Systems 32 (5): 331–42.
  • Nöllenburg, M. 2007. Geographic visualization. In Human-centered visualization environments, ed. A. Kerren, A. Ebert, and J. Meyer, 257–94. Berlin: Springer.
  • Núñez, R., and K. Cooperrider. 2013. The tangle of space and time in human cognition. Trends in Cognitive Sciences 17 (5): 220–29.
  • Orellana, D., and M. Wachowicz. 2011. Exploring patterns of movement suspension in pedestrian mobility. Geographical Analysis 43 (3): 241–60.
  • O'Sullivan, D. 2004. Complexity science and human geography. Transactions of the Institute of British Geographers 29 (3): 282–95.
  • Oud, J. H. L., H. Folmer, R. Patuelli, and P. Nijkamp. 2012. Continuous‐time modeling with spatial dependence. Geographical Analysis 44 (1): 29–46.
  • Parker, D. C., S. M. Manson, M. A. Janssen, M. J. Hoffmann, and P. Deadman. 2003. Multi-agent systems for the simulation of land-use and land-cover change: A review. Annals of the Association of American Geographers 93 (2): 314–37.
  • Patterson, T. A., M. Basson, M. V. Bravington, and J. S. Gunn. 2009. Classifying movement behaviour in relation to environmental conditions using hidden Markov models. Journal of Animal Ecology 78 (6): 1113–23.
  • Peuquet, D. J. 1994. It's about time: A conceptual framework for the representation of temporal dynamics in geographic information systems. Annals of the Association of American Geographers 84 (3): 441–61.
  • ———. 2002. Representations of space and time. New York: Guilford.
  • Peuquet, D. J., and N. Duan. 1995. An event-based spatiotemporal data model (ESTDM) for temporal analysis of geographical data. International Journal of Geographical Information Systems 9 (1): 7–24.
  • Pfeifer, P. E., and S. E. Bodily. 1990. A test of space–time ARMA modelling and forecasting of hotel data. Journal of Forecasting 9 (3): 255–72.
  • Polyak, I., G. R. North, and J. B. Valdes. 1994. Multivariate space–time analysis of prestorm precipitation. Journal of Applied Meteorology 33 (9): 1079–87.
  • Pontius, R. G., Jr., S. Peethambaram, and J.-C. Castella. 2011. Comparison of three maps at multiple resolutions: A case study of land change simulation in Cho Don District, Vietnam. Annals of the Association of American Geographers 101 (1): 45–62.
  • Preacher, K. J., A. L. Wichman, R. C. MacCallum, and N. E. Briggs. 2008. Latent growth curve modeling. Los Angeles: Sage.
  • Quespi, A. E. M. 1994. Pacha: Un concepto andino de espacio y tiempo [Pacha: An Andean concept of space and time]. Revista Española de Antropología Americana 24:155.
  • Raper, J., and D. Livingstone. 1995. Development of a geomorphological spatial model using object-oriented design. International Journal of Geographical Information Systems 9 (4): 359–83.
  • Ren, F., and M.-P. Kwan. 2007. Geovisualization of human hybrid activity-travel patterns. Transactions in GIS 11 (5): 721–44.
  • Rey, S. 2001. Spatial empirics for economic growth and convergence. Geographical Analysis 33:195–214.
  • Rey, S. J., and M. V. Janikas. 2006. STARS: Space–time analysis of regional systems. Geographical Analysis 38 (1): 67–86.
  • Rey, S. J., M. V. Janikas, and O. Smirnov. 2005. Exploratory geovisualization of spatial dynamics. In Geocomputation 2005, ed. Y. Xie and D. G. Brown. (CD-ROM). Ann Arbor: University of Michigan.
  • Richardson, D. B. 2013. Real-time space–time integration in GIScience and geography. Annals of the Association of American Geographers 103 (5): 1062–71.
  • Robertson, C., T. A. Nelson, B. Boots, and M. A. Wulder. 2007. STAMP: Spatial-temporal analysis of moving polygons. Journal of Geographical Systems 9 (3): 207–27.
  • Rouhani, S., and H. Wackernagel. 1990. Multivariate geostatistical approach to space–time data analysis. Water Resources Research 26 (4): 585–91.
  • Sansó, B., and L. Guenni. 1999. Venezuelan rainfall data analysed by using a Bayesian space–time model. Journal of the Royal Statistical Society Series C: Applied Statistics 48:345–62.
  • Scheepens, R., H. van de Wetering, and J. J. van Wijk. 2014. Contour based visualization of vessel movement predictions. International Journal of Geographical Information Science 28 (5): 891–909.
  • Scholz, R. W., and Y. Lu. 2014. Detection of dynamic activity patterns at a collective level from large-volume trajectory data. International Journal of Geographical Information Science 28 (5): 946–63.
  • Shannon, C. E., and W. Weaver. 1964. The mathematical theory of communication. Urbana: University of Illinois Press.
  • Shaw, S.-L., H. Yu, and L. S. Bombom. 2008. A space–time GIS approach to exploring large individual-based spatiotemporal datasets. Transactions in GIS 12 (4): 425–41.
  • Shoval, N., and M. Isaacson. 2007. Sequence alignment as a method for human activity analysis in space and time. Annals of the Association of American Geographers 97 (2): 282–97.
  • Song, Y., and H. J. Miller. 2014. Simulating visit probability distributions within planar space–time prisms. International Journal of Geographical Information Science 28 (1): 104–25.
  • Subramanian, S. V. 2010. Multilevel modeling. In Handbook of applied spatial analysis: Software tools, methods, and applications, ed. M. M. Fischer, and A. Getis, 507–25. New York: Springer.
  • Takada, T., A. Miyamoto, and S. F. Hasegawa. 2010. Derivation of a yearly transition probability matrix for land-use dynamics and its applications. Landscape Ecology 25 (4): 561–72.
  • Tang, W., and D. A. Bennett. 2010. Agent-based modeling of animal movement: A review. Geography Compass 4 (7): 682–700.
  • Tang, W., D. A. Bennett, and S. Wang. 2011. A parallel agent-based model of land use opinions. Journal of Land Use Science 6 (2): 121–35.
  • Tang, W., and S. Wang. 2009. HPABM: A hierarchical parallel simulation framework for spatially-explicit agent-based models. Transactions in GIS 13 (3): 315–33.
  • Tobler, W. R. 1970. A computer moving simulating urban growth in the Detroit region. Economic Geography 46:234–40.
  • Torrens, P. M. 2014. High-resolution space–time processes for agents at the built–human interface of urban earthquakes. International Journal of Geographical Information Science 28 (5): 964–86.
  • Travis, C. 2014. Transcending the cube: Translating GIScience time and space perspectives in a humanities GIS. International Journal of Geographical Information Science 28 (5): 1149–64.
  • Van Fraassen, B. C. 1970. An introduction to the philosophy of time and space. http://philpapers.org/rec/VANAIT-2 (last accessed 6 March 2014).
  • Wang, N., D. G. Brown, L. An, S. Yang, and A. Ligmann-Zielinska. 2013. Comparative performance of logistic regression and survival analysis for detecting spatial predictors of land-use change. International Journal of Geographical Information Science 27 (10): 1960–82.
  • Wikle, C. K., L. M. Berliner, and N. Cressie. 1998. Hierarchical Bayesian space–time models. Environmental and Ecological Statistics 5 (2): 117–54.
  • Winter, S., and Z.-C. Yin. 2011. The elements of probabilistic time geography. GeoInformatica 15 (3): 417–34.
  • Wu, B., R. Li, and B. Huang. 2014. A geographically and temporally weighted autoregressive model with application to housing prices. International Journal of Geographical Information Science 28 (5): 1186–204.
  • Ye, X., and M. C. Carroll. 2011. Exploratory space–time analysis of local economic development. Applied Geography 31 (3): 1049–58.
  • Yi, J., Y. Du, F. Liang, C. Zhou, D. Wu, and Y. Mo. 2014. A representation framework for studying spatiotemporal changes and interactions of dynamic geographic phenomena. International Journal of Geographical Information Science 28 (5): 1010–27.
  • Yu, J., R. de Jong, and L. Lee. 2008. Quasi-maximum likelihood estimators for spatial dynamic panel data with fixed effects when both n and T are large. Journal of Econometrics 146:118–34.
  • Yuan, M. 1999. Use of a three-domain representation to enhance GIS support for complex spatiotemporal queries. Transactions in GIS 3 (2): 137–59.
  • Yuan, M., J. McIntosh, and G. DeLozier. 2015. GIS as a narrative generation platform. In Deep maps and spatial narratives: The spatial humanities, ed. D. J. Bodenhamer, J. Corrigan, and T. M. Harris, 176–202. Bloomington: Indiana University Press.
  • Yuan, M., A. Nara, and J. Bothwell. 2014. Space–time representation and analytics. Annals of GIS 20 (1): 1–9.
  • Zhao, Z., S.-L. Shaw, and D. Wang. 2015. A space–time raster GIS data model for spatiotemporal analysis of vegetation responses to a freeze event. Transactions in GIS 19 (1): 151–68.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.