678
Views
25
CrossRef citations to date
0
Altmetric
Original Articles

Alternatives to LiDAR-derived canopy height models for softwood plantations: a review and example using photogrammetry

, , &

References

  • Andersen H-E, McGaughey RJ, Reutebuch SE. 2008. Assessing the influence of flight parameters, interferometric processing, slope and canopy density on the accuracy of X-band IFSAR-derived forest canopy height models. Int J Rem Sens. 29:1495–1510.
  • Balzter H, Luckman A, Skinner L, Rowland C, Dawson T. 2007. Observations of forest stand top height and mean height from interferometric SAR and LiDAR over a conifer plantation at Thetford Forest, UK. Int J Rem Sens. 28:1173–1197.
  • Barrett F, McRoberts RE, Tomppo E, Cienciala E, Waser LT. 2016. A questionnaire-based review of the operational use of remotely sensed data by national forest inventories. Rem Sens Environ. 174:279–289.
  • Bohlin J, Wallerman J, Fransson JES. 2012. Forest variable estimation using photogrammetric matching of digital aerial images in combination with a high-resolution DEM. Scand J For Res. 27:692–699.
  • Breidenbach J, Astrup R. 2012. Small area estimation of forest attributes in the Norwegian national forest inventory. Eur J For Res. 131:1255–1267.
  • Cutler DR, Edwards TC, Beard KH, Cutler A, Hess KT, Gibson J, Lawler JJ. 2007. Random forests for classification in ecology. Ecology 88:2783–2792.
  • Dandois JP, Ellis EC. 2010. Remote sensing of vegetation structure using computer vision. Rem Sens. 2:1157–1176.
  • Dandois JP, Ellis EC. 2013. High spatial resolution three-dimensional mapping of vegetation spectral dynamics using computer vision. Rem Sens Environ. 136:259–276.
  • Dandois JP, Olano M, Ellis EC. 2015. Optimal altitude, overlap, and weather conditions for computer vision UAV estimates of forest structure. Rem Sens. 7:13895–13920.
  • Dash JP, Watt MS, Bhandari S, Watt P. 2016. Characterising forest structure using combinations of airborne laser scanning data, RapidEye satellite imagery and environmental variables. Forestry. 89:159–169.
  • Díaz-Varela RA, de la Rosa R, León L, Zarco-Tejada PJ. 2015. High-resolution airborne UAV imagery to access olive tree crown parameters using 3D photo reconstruction: application in breeding trials. Rem Sens. 7:4213–4232.
  • Fensham RJ, Fairfax RJ. 2002. Aerial photography for assessing vegetation change: a review of applications and the relevance of findings for Australian vegetation history. Aust J Bot. 50:415–429.
  • Garestier F, Dubois-Fernandez P, Champion I, Le Toan T. 2011. Pine forest investigation using high resolution P-band Pol-InSAR data. Rem Sens Environ. 115:2897–2905.
  • Garestier F, Dubois-Fernandez PC, Papathanassiou KP. 2008. Pine forest height inversion using single-pass X-band PolInSAR data. IEEE Trans Geosci Rem. 46:59–68.
  • Gatziolis D, Lienard JF, Vogs A, Strigul NS. 2015. 3D tree dimensionality assessment using photogrammetry and small unmanned aerial vehicles. PLoS One. 10(9):e0137765.
  • Gobakken T, Bollandsås OM, Næsset E. 2015. Comparing biophysical forest characteristics estimated from photogrammetric matching of aerial images and airborne laser scanning data. Scand J For Res. 30:73–86.
  • Gobakken T, Næsset E, Bollandsås O. 2012. Comparing forest stand characteristics predicted from digital aerial photogrammetry and airborne laser scanning. SilviLaser. 2012; 2012 Sep 16–19; Vancouver, Canada. Paper No. SL2012–012.
  • Granholm A-H, Olsson H, Nilsson M, Allard A, Holmgren J. 2015. The potential of digital surface models based on aerial images for automated vegetation mapping. Int J Rem Sens. 36:1855–1870.
  • Hall RJ. 2003. The roles of aerial photographs in forestry remote sensing image analysis. In: Wulder MA and Franklin SE, editors. Remote sensing of forest environments: concepts and case studies. Boston (MA): Kluwer Academic Publishers.
  • Hall SA, Burke IC, Box DO, Kaufmann MR, Stoker JM. 2005. Estimating stand structure using discrete-return lidar: an example from low density, fire prone ponderosa pine forests. For Ecol Manage. 208:189–209.
  • Hardin PJ, Jensen RR. 2011. Small-scale unmanned aerial vehicles in environmental remote sensing: challenges and opportunities. GISci Rem Sens. 48:99–111.
  • Harwin S, Lucieer A, Osborn J. 2015. The impact of the calibration method on the accuracy of point clouds derived using unmanned aerial vehicle multi-view stereopsis. Rem Sens 7:11933–11953.
  • Hirschmüller H. 2008. Stereo processing by semi-global matching and mutual information. IEEE Trans Pattern Anal. 30:328–341.
  • Hobi ML, Ginzler C. 2012. Accuracy assessment of digital surface models based on WorldView-2 and ADS80 stereo remote sensing data. Sensors. 12:6347–6368.
  • Honkavaara E, Markelin L, Rosnell T, Nurminen K. 2012. Influence of solar elevation in radiometric and geometric performance of multispectral photogrammetry. ISPRS J Photogramm. 67:13–26.
  • Huang S, Hager SA, Halligan KQ, Fairweather IS, Swanson AK, Crabtree RL. 2009. A comparison of individual tree and forest plot height derived from Lidar and InSAR. Photogramm Eng Rem Sens. 75:159–167.
  • Hudak AT, Lefsky MA, Cohen WB, Berterretche M. 2002. Integration of lidar and Landsat ETM+ data for estimating and mapping forest canopy height. Rem Sens Environ. 82:397–416.
  • Immitzer M, Stepper C, Böck S, Straub C, Atzberger C. 2016. Use of WorldView-2 stereo imagery and national forest inventory data for wall-to-wall mapping of growing stock. For Ecol Manage. 359:232–246.
  • James MR, Robson S. 2012. Straightforward reconstruction of 3D surfaces and topography with a camera: accuracy and geoscience application. J Geophys Res 117:F03017.
  • Järnstedt J, Pekkarinen A, Tuominen S, Ginzler C, Holopainen M, Viitala R. 2012. Forest variable estimation using a high-resolution digital surface model. ISPRS J Photogramm. 74:78–84.
  • Jensen JLR, Mathews AJ. 2016. Assessment of image-based point cloud products to generate a bare earth surface and estimate canopy heights in a woodland ecosystem. Rem Sens 8:50.
  • Joshi NP, Mitchard ETA, Schumacher J, Johannsen VK, Saatchi S, Fensholt R. 2015. L-band SAR backscatter related to forest cover, height and aboveground biomass at multiple spatial scales across Denmark. Rem Sens. 7:4442–4472.
  • Kaasalainen S, Holopainen M, Karjalainen M, Vastaranta M, Kankare V, Karila K, Osmanoglu B. 2015. Combining LiDAR and synthetic aperture radar data to estimate forest biomass: status and prospects. Forests. 6:252–270.
  • Karila K, Vastaranta M, Karjalainen M, Kaasalainen S. 2015. Tandem-X interferometry in the prediction of forest inventory attributes in managed boreal forests. Rem Sens Environ. 159:259–268.
  • Karjalainen M, Kankare V, Vastaranta M, Holopainen M, Hyyppä J. 2012. Prediction of plot-level forest variables using TerraSAR-X stereo SAR data. Rem Sens Environ. 117:338–347.
  • Kelcey J, Lucieer A. 2012. Sensor correction of a 6-band multispectral imaging sensor for UAV remote sensing. Rem Sens. 4:1462–1493.
  • Khosravipour A, Skidmore AK, Isenburg M, Wang T, Hussin YA. 2014. Generating pit-free canopy height models from airborne lidar. Photogramm Eng Rem Sens. 80:863–872.
  • Koch B. 2010. Status and future of laser scanning, synthetic aperture radar and hyperspectral remote sensing data for forest biomass assessment. ISPRS J Photogramm. 65:581–590.
  • Leberl F, Irschara A, Pock T, Meixner P, Gruber M, Scholz S, Wiechert A. 2010 October. Point clouds: Lidar versus 3D vision. Photogramm Eng Rem Sens. 76:1123–1134. doi:10.14358/PERS.76.10.1123
  • Lehmann EA, Caccetta P, Lowell K, Mitchell A, Zhou Z-S, Held A, Milne T, Tapley I. 2015. SAR and optical remote sensing: assessment of complementarity and interoperability in the context of a large-scale operational forest monitoring system. Rem Sens Environ. 156:335–348.
  • Lisein J, Pierrot-Deseilligny M, Bonnet S, Lejeune P. 2013. A photogrammetric workflow for the creation of a forest canopy height model from small unmanned aerial; system imagery. Forests. 4:922–944.
  • Micheletti N, Chandler JH, Lane SN. 2015. Structure from motion (SFM) photogrammetry. In: Clarke LE and Nield JM, editors. Geomorphological techniques. online ed. London: British Society for Geomorphology. ISSN: 2047–0371, Chapter 2, Sec. 2.2.
  • Mikita T, Janata P, Surový P. 2016. Forest stand inventory based on combined aerial and terrestrial close-range photogrammetry. Forests. 7:165.
  • Mora B, Wulder MA, Hobart G, White JC, Bater CW, Gougeon FA, Varhola A, Coops NC. 2013. Forest inventory stand height estimates from very high spatial resolution satellite imagery calibrated with LIDAR-plots. Int J Rem Sens. 34:4406–4424.
  • Næsset E. 2002. Determination of mean tree height of forest stands by digital photogrammetry. Scand J For Res. 17:446–459.
  • Næsset E, Gobakken T, Solberg S, Gregoire TG, Nelson R, Ståhl G, Weydahl D. 2011. Model-assisted regional forest biomass estimation using LiDAR and InSAR as auxiliary data: a case study from a boreal forest area. Rem Sens Environ. 115:3599–3614.
  • Neigh CSR, Masek J, Bourget P, Cook B, Huang C, Rishmawi K, Zhao F. 2014. Deciphering the precision of stereo IKONOS canopy height models for US forests with G-LiHT airborne LiDAR. Rem Sens. 6:1762–1782.
  • Neigh CSR, Masek JG, Bourget P, Rishmawi K, Zhao F, Huang C, Cook BD, Nelson RF. 2016. Regional rates of young US forest growth estimated from annual Landsat disturbance history and IKONOS stereo imagery. Rem Sens Environ. 173:282–293.
  • Nelson RF, Hyde P, Johnson P, Emessiene B, Imhoff ML, Campbell R, Edwards W. 2007. Investigating RaDAR-LiDAR synergy in a North Carolina pine forest. Rem Sens Environ. 110:98–108.
  • NSW Land and Property Information. 2012. Guidelines for CORnet-NSW continuously operating reference stations (CORS) version 1.1 [Internet]. NSW Department of Finance & Service. [cited 2012 Jun 12]. Available from: http://spatialservices.finance.nsw.gov.au/_data/assets/pdf_file/0003/160707/Guidelines_for_CORSnet-NSW_CORS_v1.1.pdf
  • Nurminen K, Karjalainen M, Yu X, Hyyppä J, Honkavaara E. 2013. Performance of dense digital surface models based on image matching in the estimation of plot-level forest variables. ISPRS J Photogramm. 83:104–115.
  • Ofner M, Hirschmugl M, Raggam H, Schardt M. 2006. 3D stereo mapping by means of UltraCamD data. Proceedings of the international workshop on 3D remote sensing in forestry; Feb 14–15; Vienna. p. 353–359.
  • Olesk A, Voormansik K, Vain A, Noorma M, Praks J. 2015. Seasonal differences in forest height estimation from interferometric TanDEM-X coherence data. IEEE J Sel Top Appl. 8:5565–5572.
  • Paine DP, Kiser JD. 2012. Aerial photography and image interpretation. 3rd ed. Hoboken (NJ): John Wiley & Sons.
  • Persson H, Fransson JES. 2014. Forest variable estimation using radargrammetric processing of TerraSAR-X images in boreal forests. Rem Sens. 6:2084–2107.
  • Pitt DG, Woods M, Penner M. 2014. A comparison of point clouds derived from stereo imagery and airborne laser scanning for the area-based estimation of forest inventory attributes in boreal Ontario. Can J Rem Sens. 40:214–232.
  • Poli D, Remondino F, Angiuli E, Agugiaro G. 2015. Radiometric and geometric evaluation of GeoEye-1, WorldView-2 and Pléiades-1A stereo images for 3D information extraction. ISPRS J Photogramm. 100:35–47.
  • Puliti S, Ørka HO, Gobakken T, Næsset E. 2015. Inventory of small forest areas using an unmanned aerial system. Rem Sens. 7:9632–9654.
  • Reiche J, Lucas R, Mitchell AL, Verbesselt J, Hoekman DH, Haarpaintner J, Kellndorfer JM, Rosenqvist A, Lehmann EA, Woodcock CE, et al. 2016. Combining satellite data for better tropical forest monitoring. Nat Clim Change. 6:120–122.
  • Remondino F, Fraser C. 2006. Digital camera calibration methods: considerations and comparisons. ISPRS commission V symposium ‘image engineering and vision metrology’; 2006 Sep 25–27; Dresden, Germany. Vol. 36. p. 266–272.
  • Remondino F, Spera MG, Nocerino E, Menna F, Nex F. 2014. State of the art in high density image matching. Photogram Rec 29:144–166.
  • Sadeghi Y, St-Onge B, Leblon B, Simardi M. 2016. Canopy height model (CHM) derived from a TanDEM-X InSAR DSM and an airborne Lidar DTM in boreal forest. IEEE J Sel Top Appl. 9:381–397.
  • Saremi H, Kumar L, Turner R, Stone C, Melville G. 2014. Impact of local slope and aspect assessed from LiDAR records on tree diameter in radiata pine (Pinus radiata D. Don) plantations. Ann For Sci 71:771–780.
  • Sexton JO, Bax T, Siqueira P, Swenson JJ, Hensley S. 2009. A comparison of lidar, radar, and field measurements of canopy height in pine and hardwood forests of southeastern North America. For Ecol Manage. 257:1136–1147.
  • Shamsoddini A, Trinder JC, Turner R. 2013. Pine plantation structure mapping using WorldView-2 multispectral image. Int J Rem Sens. 34:3986–4007.
  • Shelley A, Andrews H. 2015. Economic benefits to New Zealand from beyond-line-of-sight operation of UAVs [ cited 2015 Jun 2]. Available from: https://www.callaghaninnovation.govt.nz/sites/all/files/UAV-benefits-study.pdf
  • Smith MW, Carrivick JL, Quincey DJ. 2015. Structure from motion photogrammetry in physical geography. Prog Phys Geogr. 40:247–275.
  • Snavely N, Simon I, Goesele M, Szeliski R, Seitz S. 2010. Scene reconstruction and visualization from community photo collections. Proc IEEE. 98:1370–1390.
  • Solberg S, Astrup R, Gobakken T, Næsse E, Weydahl DJ. 2010. Estimating spruce and pine biomass with interferometric X-band SAR. Rem Sens Environ. 114:2353–2360.
  • Solberg S, Weydahl DJ, Astrup R. 2015. Temporal stability of X-band single-pass InSAR heights in a spruce forest: effects of acquisition properties and season. IEEE Trans Geosci Rem. 53:1607–1614.
  • Stal C, Tack F, DeMaeyer P, DeWulf A, Goossens R. 2013. Airborne photogrammetry and lidar for DSM extraction and 3D change detection over an urban area – a comparative study. Int J Rem Sens. 34:1087–1110.
  • Steinmann K, Mandallaz D, Ginzler C, Lanz A. 2013. Small area estimations of proportion of forest and timber volume combining Lidar data and stereo aerial images with terrestrial data. Scand J For Res. 28:373–385.
  • Stepper C, Straub C, Pretzsch H. 2015. Using semi-global matching point clouds to estimate growing stock at the plot and stand levels: application for a broadleaf-dominated forest in central Europe. Can J For Res. 45:111–123.
  • St-Onge B, Audet F-A, Bégin J. 2015. Characterizing the height structure and composition of a boreal forest using an individual tree crown approach applied to photogrammetric point clouds. Forests. 6:3899–3922.
  • St-Onge B, Jumelet J, Cobello M, Véga C. 2004. Measuring individual tree height using a combination of stereo-photogrammetry and lidar. Can J For Res. 34:2122–2130.
  • St-Onge B, Vega C, Fournier RA, Hu Y. 2008. Mapping canopy height using a combination of digital stereo-photogrammetry and lidar. Int J Rem Sens. 29:3343–3364.
  • Straub C, Tian J, Seitz R, Reinartz P. 2013. Assessment of Cartosat-1 and WorldView-2 stereo imagery in combination with a LiDAR-DTM for timber volume estimation in a highly structured forest in Germany. Forestry. 86:463–473.
  • Turner D, Lucieer A, Watson C. 2012. An automated technique for generating georectified mosaics from ultra-high resolution unmanned aerial vehicle (UAV) imagery, based on structure from motion (SfM) point clouds. Rem Sens. 4:1392–1410.
  • Vasilescu MM. 2013. Standard error of tree height using Vertex III. Bull Transilvania Ser II (Univ Braşov). 6:75–80.
  • Vastaranta M, Niemi M, Karjalainen M, Peuhkurinen J, Kankare V, Hyyppä J, Holopainen M. 2014. Prediction of forest stand attributes using TerraSAR-X stereo imagery. Rem Sens. 6:3227–3246.
  • Vastaranta M, Wulder MA, White JC, Pekkarinen A, Tuominen S, Ginzler C, Kankare V, Holopainen M, Hyyppä J, Hyyppä H. 2013. Airborne laser scanning and digital stereo imagery measures of forest structure: comparative results and implications to forest mapping and inventory update. Can J Rem Sens. 39:382–395.
  • Wallace L, Lucieer A, Malenovský Z, Turner D, Vopěnka P. 2016. Assessment of forest structure using two UAV techniques: a comparison of airborne laser scanning and structure from motion (SfM) point clouds. Forests 7:62.
  • Wallace L, Lucieer A, Watson C. 2014a. Evaluating tree detection and segmentation routines on very high resolution UAV LiDAR data. IEEE Trans Geosci Rem. 52:7619–7628.
  • Wallace L, Lucieer A, Watson C, Turner D. 2012. Development of a UAV-LiDAR system with application to forest inventory. Rem Sens. 4:1519–1543.
  • Wallace L, Watson C, Lucieer A. 2014b. Detecting pruning of individual stems using airborne laser scanning data captured from an unmanned aerial vehicle. Int J Appl Earth Obs. 30:76–85.
  • Wang J, Di KC, Li R. 2005. Evaluation and improvement of geopositioning accuracy of IKONOS stereo imagery. J Surv Eng-ASCE. 131:35–42.
  • Watt P, Meredith A, Yang C, Watt MS. 2013. Development of regional models of Pinus radiata height from GIS spatial data supported with supplementary satellite imagery. N Z J For Sci. 43: Article no. 11. Available from: https://nzjforestryscience.springeropen.com/articles/10.1186/1179-5395-43-11
  • Watt PJ, Donoghue DNM, McManus KB, Dunford RW. 2006. Predicting forest height from Ikonos, Landsat and LiDAR imagery. The international archives of the photogrammetry, remote sensing and spatial information sciences. Vol. XXXVI – 8/W2. p. 228–231.
  • Westoby MJ, Brasington J, Glasser NF, Hambrey MJ, Reynolds JM. 2012. ‘Structure-from-motion’ photogrammetry: a low-cost, effective tool for geoscience applications. Geomorphology. 179:300–314.
  • White J. 2016. Characterizing three-dimensional forest structure from digital aerial photogrammetry: a competing or complementary technology to airborne Lidar? 2016 Mar–Apr. Vancouver (BC): Association of BC Forest Professionals. p. 12–14.
  • White JC, Stepper C, Tompalski P, Coops NC, Wulder MA. 2015. Comparing ALS and image-based point cloud metrics and modelled forest inventory attributes in a complex coastal forest environment. Forests. 6:3704–3732.
  • White JC, Wulder MA, Vastaranta M, Coops NC, Pitt D, Woods M. 2013. The utility of image-based point clouds for forest inventory: a comparison with airborne laser scanning. Forests. 4:518–536.
  • Whitehead K, Hugenholtz CH. 2014. Remote sensing of the environment with small unmanned aircraft systems (UASs), part 1: a review of progress and challenges. J Unman Veh Syst. 2:69–85.
  • Wijanarto A, Osborn J. 2007. Mapping canopy height of radiata pine plantation in Tasmania, Australia using softcopy photogrammetry. Int J Geoinf. 3:61–71.
  • Wilkes P, Jones SD, Suarez L, Mellor A, Woodgate W, Soto-Berelov M, Haywood A, Skidmore AK. 2015. Mapping forest canopy height across large areas by upscaling ALS estimates with freely available satellite data. Rem Sens. 7:12563–12587.
  • Wulder MA, Seemann D. 2003. Forest inventory height update through the integration of lidar data with segmented Landsat imagery. Can J Rem Sens. 29:536–543.
  • Zarco-Tejada PJ, Diaz-Varela R, Angileri V, Loudjani P. 2014. Tree height quantification using very high resolution imagery acquired from an unmanned aerial vehicle (UAV) and automatic 3D photo-reconstruction methods. Euro J Agron. 55:89–99.
  • Zielewska-Büttner K, Adler P, Ehmann M, Braunisch V. 2016. Automated detection of forest gaps in spruce dominated stands using canopy height models derived from stereo aerial imagery. Rem Sens 8:175.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.