256
Views
13
CrossRef citations to date
0
Altmetric
Articles

Evaluating the robustness of point clouds from small format aerial photography over a Pinus radiata plantation

ORCID Icon, ORCID Icon, , ORCID Icon, &

References

  • Abd Latif Z, Aman SNA, Ghazali R. 2011. Delineation of tree crown and canopy height using airborne LiDAR and aerial photo. In: Proceedings of 2011 IEEE 7th International Colloquium on Signal Processing and its Applications (CSPA 2011) March 4-6; Penang (Malaysia). p. 354–358
  • Agisoft. 2015. Alignment experiments. Agisoft community [Internet]. [accessed 2016 Oct 15]. Available from: http://www.agisoft.com/forum/index.php?topic=3559.0
  • Agisoft LLC. 2011. Agisoft photoscan user manual: professional edition, version 1.2 [Internet]. [accessed 2016 Oct 15]. p. 97. Available from: http://www.agisoft.com/pdf/photoscan-pro_1_2_en.pdf
  • Baltsavias E, Gruen A, Eisenbeiss H, Zhang L, Waser LT. 2008. High-quality image matching and automated generation of 3D tree models. International Journal of Remote Sensing. 29:1243–1259.
  • Bater CW, Coops NC. 2009. Evaluating error associated with LiDAR-derived DEM interpolation. Computers & Geosciences. 35:289–300.
  • Bohlin J, Wallerman J, Fransson JES. 2012. Forest variable estimation using photogrammetric matching of digital aerial images in combination with a high-resolution DEM. Scandinavian Journal of Forestry Research. 27:692–699.
  • Bortolot ZJ, Wynne RH. 2005. Estimating forest biomass using small footprint LiDAR data: an individual tree-based approach that incorporates training data. ISPRS Journal of Photogrammetry and Remote Sensing. 59:342–360.
  • Breidenbach J, Kublin E, McGaughey RJ, Andersen H-E, Reutebuch SE. 2008. Mixed-effects models for estimating stand volume by means of small footprint airborne laser scanner data. Photogrammetric Journal of Finland. 21:4–15.
  • Cao L, Coops NC, Hermosilla T, Innes J, Dai J, She G. 2014. Using small-footprint discrete and full-waveform airborne LiDAR metrics to estimate total biomass and biomass components in subtropical forests. Remote Sensing. 6:7110–7135.
  • Dandois JP, Ellis EC. 2013. High spatial resolution three-dimensional mapping of vegetation spectral dynamics using computer vision. Remote Sensing of Environment. 136:259–276.
  • Dandois JP, Olano M, Ellis EC. 2015. Optimal altitude, overlap, and weather conditions for computer vision UAV estimates of forest structure. Remote Sensing. 7:13895–13920.
  • Eltner A, Kaiser A, Castillo C, Rock G, Neugirg F, Abellan A. 2015. Image-based surface reconstruction in geomorphometry – merits, limits and developments of a promising tool for geoscientists. Earth Surface Dynamics Discussion. 3:1445–1508.
  • Gobakken T, Bollandsås OM, Næsset E. 2015. Comparing biophysical forest characteristics estimated from photogrammetric matching of aerial images and airborne laser scanning data. Scandinavian Journal of Forestry Research. 30:73–86.
  • Gobakken T, Næsset E. 2008. Assessing effects of laser point density, ground sampling intensity, and field sample plot size on biophysical stand properties derived from airborne laser scanner data. Canadian Journal of Forestry Research. 38:1095–1109.
  • Gómez-Gutiérrez Á, De Sanjosé-Blasco J, Lozano-Parra J, Berenguer-Sempere F, De Matías-Bejarano J. 2015. Does HDR pre-processing improve the accuracy of 3D models obtained by means of two conventional SfM-MVS software packages? The case of the Corral del Veleta Rock Glacier. Remote Sensing. 7:10269–10294.
  • Gómez-Gutiérrez Á, Juan De Sanjosé-Blasco J, De Matí As-Bejarano J, Berenguer-Sempere F. 2014. Comparing two photo-reconstruction methods to produce high density point clouds and DEMs in the Corral del Veleta Rock Glacier (Sierra Nevada, Spain). Remote Sensing. 6:5407–5427.
  • Haala N, Hastedt H, Wolf K, Ressl C, Baltrusch S. 2010. Digital photogrammetric camera evaluation – generation of digital elevation models. Photogrammetrie, Fernerkundung, Geoinformation. 2:99–115.
  • Haglöf Sweden AB. 2007. Users Guide Vertex III and Transponder T3 [Internet]. [accessed 2017 Aug 1]. p. 1–15. Available from: http://www.forestry-suppliers.com/Documents/128_msds.pdf
  • Hansen EH, Gobakken T, Bollandsås OM, Zahabu E, Næsset E. 2015. Modeling aboveground biomass in dense tropical submontane rainforest using airborne laser scanner data. Remote Sensing. 7:788–807.
  • Hawryło P, Tompalski P, Wężyk P. 2017. Area-based estimation of growing stock volume in Scots pine stands using ALS and airborne image-based point clouds. Forestry. 90:686–696.
  • Hernández-Clemente R, Navarro-Cerrillo RM, Ramírez F, Hornero A, Zarco-Tejada PJ. 2014. A novel methodology to estimate single-tree biophysical parameters from 3D digital imagery compared to aerial laser scanner data. Remote Sensing. 6:11627–11648.
  • Hyyppä J, Hyyppä H, Leckie D, Gougeon F, Yu X, Maltamo M. 2008. Review of methods of small-footprint airborne laser scanning for extracting forest inventory data in boreal forests. International Journal of Remote Sensing. 29:1339–1366.
  • Järnstedt J, Pekkarinen A, Tuominen S, Ginzler C, Holopainen M, Viitala R. 2012. Forest variable estimation using a high-resolution digital surface model. ISPRS Journal of Photogrammetric Remote Sensing. 74:78–84.
  • Jensen J, Mathews A. 2016. Assessment of image-based point cloud products to generate a bare earth surface and estimate canopy heights in a woodland ecosystem. Remote Sensing. 8:50.
  • Korhonen L, Korpela I, Heiskanen J, Maltamo M. 2011. Airborne discrete-return LiDAR data in the estimation of vertical canopy cover, angular canopy closure and leaf area index. Remote Sensing of Environment. 115:1065–1080.
  • Kruschke JK. 2013. Bayesian estimation supersedes the t test. Journal of Experimental Psychology: General. 142:573–603.
  • Kruschke JK, Liddell TM. 2018. The Bayesian new statistics: hypothesis testing, estimation, meta-analysis, and power analysis from a Bayesian perspective. Psychonomic Bulletin and Review. 25:178–206.
  • Kukkonen M, Maltamo M, Packalen P. 2017. Image matching as a data source for forest inventory – comparison of Semi-Global Matching and Next-Generation Automatic Terrain Extraction algorithms in a typical managed boreal forest environment. International Journal of Applied Earth Observation and Geoinformatics. 60:11–21.
  • LAStools. 2015. Efficient LiDAR processing software (version 160822, academic) [Internet]. [accessed 2015 Jul 6]. Available from: http://rapidlasso.com/LAStools
  • Leberl F, Irschara A, Pock T, Meixner P, Gruber M, Scholz S, Wiechert A. 2010. Point clouds: liDAR versus 3D vision. Photogrammetric Engineering and Remote Sensing. 76:1123–1134.
  • Lefsky MA, Cohen WB, Spies TA. 2001. An evaluation of alternate remote sensing products for forest inventory, monitoring, and mapping of Douglas-fir forests in western Oregon. Canadian Journal of Forestry Research. 31:78–87.
  • Lim K, Treitz P, Wulder M, St-Onge B, Flood M. 2003. LiDAR remote sensing of forest structure. Progress in Physical Geography. 27:88–106.
  • Lucieer A, De Jong SM, Turner D. 2014. Mapping landslide displacements using Structure from Motion (SfM) and image correlation of multi-temporal UAV photography. Progress in Physical Geography. 38:97–116.
  • Maltamo M, Bollandsås OM, Næsset E, Gobakken T, Packalén P. 2011. Different plot selection strategies for field training data in ALS-assisted forest inventory. Forestry. 84:23–31.
  • Maltamo M, Malinen J, Packalén P, Suvanto A, Kangas J. 2006. Nonparametric estimation of stem volume using airborne laser scanning, aerial photography, and stand-register data. Canadian Journal of Forestry Research. 36:426–436.
  • Maltamo M, Næsset E, Vauhkonen J. 2014. Forestry applications of airborne laser scanning. In: Maltamo M, Næsset E, Vauhkonen J, editors. [Internet]. Dordrecht: Springer Netherlands. [accessed 2015 Oct 14]. DOI:10.1007/978-94-017-8663-8.
  • Maltamo M, Packalen P. 2014. Species-specific management inventory in Finland. In: Maltamo M, Næsset E, Vauhkonen J, editors. Forestry Applications of Airborne Laser Scanning Concepts and Case Studies [Internet]. Dordrecht: Springer Netherlands; p. 241–252. [accessed 2015 Oct 14]. Available from: 10.1007/978-94-017-8663-8_12.
  • Micheletti N, Chandler JHH, Lane SNN. 2015. Structure from Motion (SfM) photogrammetry. In: Cook SJ, Clarke LE, Nield JM, editors. Geomorphological techniques (online edition) [Internet]. Vol. 2. London: British Society for Geomorphology; p. 1–12. [accessed 2017 Mar 10]. Available from: https://dspace.lboro.ac.uk/dspace-jspui/bitstream/2134/17493/3/2.2.2_sfm.pdf.
  • Morgan JL, Gergel SE, Coops NC. 2010. Aerial photography: a rapidly evolving tool for ecological management. Bioscience. 60:47–59.
  • Morgenroth J, Gomez C. 2014. Assessment of tree structure using a 3D image analysis technique – a proof of concept. Urban Forestry and Urban Greening. 13:198–203.
  • Moroni MT, Musk R, Wardlaw TJ. 2017. Forest succession where trees become smaller and wood carbon stocks reduce. Forestry Ecology and Management. 393:74–80.
  • Næsset E. 1997a. Determination of mean tree height of forest stands using airborne laser scanner data. ISPRS Journal of Photogrammetry and Remote Sensing. 52:49–56.
  • Næsset E. 1997b. Estimating timber volume of forest stands using airborne laser scanner data. Remote Sensing of Environment. 61:246–253.
  • Næsset E. 2002a. Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data. Remote Sensing of Environment. 80:88–99.
  • Næsset E. 2002b. Determination of mean tree height of forest stands by digital photogrammetry. Scandinavian Journal of Forestry Research. 17:446–459.
  • Næsset E. 2007. Airborne laser scanning as a method in operational forest inventory: status of accuracy assessments accomplished in Scandinavia. Scandinavian Journal of Forestry Research. 22:433–442.
  • Næsset E, Gobakken T. 2005. Estimating forest growth using canopy metrics derived from airborne laser scanner data. Remote Sensing of Environment. 96:453–465.
  • Næsset E, Gobakken T, Holmgren J, Hyyppä H, Hyyppä J, Maltamo M, Nilsson M, Olsson H, Persson Å, Söderman U. 2004. Laser scanning of forest resources: the Nordic experience. Scandinavian Journal of Forestry Research. 19:482–499.
  • Næsset E, Nelson R. 2007. Using airborne laser scanning to monitor tree migration in the boreal-alpine transition zone. Remote Sensing of Environment. 110:357–369.
  • Nelson R, Krabill W, MacLean G. 1984. Determining forest canopy characteristics using airborne laser data. Remote Sensing of Environment. 15:201–212.
  • Nurminen K, Karjalainen M, Yu X, Hyyppä J, Honkavaara E. 2013. Performance of dense digital surface models based on image matching in the estimation of plot-level forest variables. ISPRS Journal of Photogrammetric Remote Sensing. 83:104–115.
  • Ota T, Ogawa M, Shimizu K, Kajisa T, Mizoue N, Yoshida S, Takao G, Hirata Y, Furuya N, Sano T, et al. 2015. Aboveground biomass estimation using structure from motion approach with aerial photographs in a seasonal tropical forest. Forests. 6:3882–3898.
  • Persson Å, Holmgren J, Söderman U. 2002. Detecting and measuring individual trees using an airborne laser scanner. Photogrammetric Engineering and Remote Sensing. 68:925–932.
  • Popescu SC, Wynne RH. 2004. Seeing the trees in the forest: using LiDAR and multispectral data fusion with local filtering and variable window size for estimating tree height. Photogrammetric Engineering and Remote Sensing. 70:589–604.
  • Puliti S, Gobakken T, Ørka HO, Næsset E. 2017. Assessing 3D point clouds from aerial photographs for species-specific forest inventories. Scandinavian Journal of Forestry Research. 32:68–79.
  • Puliti S, Olerka H, Gobakken T, Næsset E. 2015. Inventory of small forest areas using an unmanned aerial system. Remote Sensing. 7:9632–9654.
  • Rahlf J, Breidenbach J, Solberg S, Astrup R. 2015. Forest parameter prediction using an image-based point cloud: a comparison of semi-ITC with ABA. Forests. 6:4059–4071.
  • Rahlf J, Breidenbach J, Solberg S, Næsset E, Astrup R. 2014. Comparison of four types of 3D data for timber volume estimation. Remote Sensing of Environment. 155:325–333.
  • Reutebuch SE, McGaughey RJ, Andersen H, Carson WW. 2003. Accuracy of a high-resolution LiDAR terrain model under a conifer forest canopy. Canadian Journal of Remote Sensing. 29:527–535.
  • Riaño D, Meier E, Allgöwer B, Chuvieco E, Ustin SL. 2003. Modeling airborne laser scanning data for the spatial generation of critical forest parameters in fire behavior modeling. Remote Sensing of Environment. 86:177–186.
  • Rombouts J, Melville G, Kathuria A, Rawley B, Stone C. 2015. Operational deployment of LiDAR derived information into softwood resource systems. Sydney: Forest and Wood Products Australia. PNC305-1213.
  • Saremi H, Kumar L, Stone C, Melville G, Turner R. 2014. Sub-compartment variation in tree height, stem diameter and stocking in a Pinus radiata D. Don Plantation Examined Using Airborne LiDAR Data. Remote Sensing. 6:7592–7609.
  • Shrestha R, Wynne RH. 2012. Estimating biophysical parameters of individual trees in an urban environment using small footprint discrete-return imaging LiDAR. Remote Sensing. 4:484–508.
  • Smith MW, Carrivick JL, Quincey DJ. 2016. Structure from motion photogrammetry in physical geography. Progress in Physical Geography. 40:247–275.
  • Smith SL, Holland DA, Longley PA. 2005. Quantifying interpolation errors in urban airborne laser scanning models. Geographic Analysis. 37:200–224.
  • Sona G, Pinto L, Pagliari D, Passoni D, Gini R. 2014. Experimental analysis of different software packages for orientation and digital surface modelling from UAV images. Earth Science Informatics. 7:97–107.
  • Stone C, Webster M, Osborn J, Iqbal I. 2016. Alternatives to LiDAR-derived canopy height models for softwood plantations: a review and example using photogrammetry. Australian Forestry. 79:271–282.
  • Stone MG. 1998. Forest-type mapping by photo-interpretation: a multi-purpose base for Tasmania’s forest management. Tasforests. 10:15–32.
  • St-Onge B, Audet F-A, Bégin J. 2015. Characterizing the height structure and composition of a boreal forest using an individual tree crown approach applied to photogrammetric point clouds. Forests. 6:3899–3922.
  • St-Onge B, Vega C, Fournier RA, Hu Y. 2008. Mapping canopy height using a combination of digital stereo-photogrammetry and LiDAR. International Journal of Remote Sensing. 29:3343–3364.
  • Straub C, Stepper C, Seitz R, Waser LT. 2013. Potential of UltraCamX stereo images for estimating timber volume and basal area at the plot level in mixed European forests. Canadian Journal of Forestry Research. 43:731–741.
  • Sumnall MJ, Hill RA, Hinsley SA. 2016. Comparison of small-footprint discrete return and full waveform airborne LiDAR data for estimating multiple forest variables. Remote Sensing of Environment. 173:214–223.
  • Thiel C, Schmullius C. 2017. Comparison of UAV photograph-based and airborne lidar-based point clouds over forest from a forestry application perspective. International Journal of Remote Sensing. 38:2411–2426.
  • Turner D, Lucieer A, Wallace L. 2014. Direct georeferencing of ultra high-resolution UAV imagery. IEEE Transactions on Geoscience and Remote Sensing. 52:2738–2745.
  • Turner D, Lucieer A, Watson C. 2012. An automated technique for generating georectified mosaics from ultra-high resolution Unmanned Aerial Vehicle (UAV) imagery, based on Structure from Motion (SFM) point clouds. Remote Sensing. 4:1392–1410.
  • Ullah S, Dees M, Datta P, Adler P, Koch B. 2017. Comparing airborne laser scanning, and image-based point clouds by semi-global matching and enhanced automatic terrain extraction to estimate forest timber volume. Forests. 8:2–15.
  • Valbuena R, Packalen P, Mehtätalo L, García-Abril A, Maltamo M. 2013. Characterizing forest structural types and shelterwood dynamics from Lorenz-based indicators predicted by airborne laser scanning. Canadian Journal of Forestry Research. 43:1063–1074.
  • Van Leeuwen M, Nieuwenhuis M. 2010. Retrieval of forest structural parameters using LiDAR remote sensing. European Journal of Forestry Research. 129:749–770.
  • Vastaranta M, Wulder MA, White JC, Pekkarinen A, Tuominen S, Ginzler C, Kankare V, Holopainen M, Hyyppä J, Hyyppä H. 2013. Airborne laser scanning and digital stereo imagery measures of forest structure: comparative results and implications to forest mapping and inventory update. Canadian Journal of Remote Sensing. 39:382–395.
  • Wallace L, Lucieer A, Malenovský Z, Turner D, Vopěnka P. 2016. Assessment of forest structure using two UAV techniques: a comparison of airborne laser scanning and Structure from Motion (SfM) point clouds. Forests. 7:62.
  • Waser L, Fischer C, Wang Z, Ginzler C. 2015. Wall-to-wall forest mapping based on digital surface models from image-based point clouds and a NFI forest definition. Forests. 6:4510–4528.
  • Westoby MJ, Brasington J, Glasser NF, Hambrey MJ, Reynolds JM. 2012. “Structure-from-Motion” photogrammetry: a low-cost, effective tool for geoscience applications. Geomorphology. 179:300–314.
  • White J, Coops NC, Wulder MA, Vastaranta M, Hilker T, Tompalski P. 2016. Remote sensing technologies for enhancing forest inventories: a review. Canadian Journal of Remote Sensing. 8992:1–23.
  • White J, Stepper C, Tompalski P, Coops N, Wulder M. 2015. Comparing ALS and image-based point cloud metrics and modelled forest inventory attributes in a complex coastal forest environment. Forests. 6:3704–3732.
  • White J, Wulder MA, Varhola A, Vastaranta M, Coops NC, Cook BD, Pitt D, Woods M. 2013a. A best practices guide for generating forest inventory attributes from airborne laser scanning data using an area-based approach. The Forest Chronicle. 89:722–723.
  • White J, Wulder M, Vastaranta M, Coops N, Pitt D, Woods M. 2013b. The utility of image-based point clouds for forest inventory: a comparison with airborne laser scanning. Forests. 4:518–536.
  • Wijanarto A, Osborn J. 2007. Mapping canopy height of radiata pine plantation in Tasmania, Australia, using softcopy photogrammetry. International Journal of Geoinformatics. 3:61–71.
  • Wulder MA, Bater CW, Coops NC, Hilker T, White JC. 2008. The role of LiDAR in sustainable forest management. The Forestry Chronicle. 84:807–826.
  • Xu C, Morgenroth J, Manley B. 2015. Integrating data from discrete return airborne LiDAR and optical sensors to enhance the accuracy of forest description: a review. Current Forestry Reports. 1:206–219.
  • Yebra M, Marselis S, Van Dijk A, Cary G, Chen Y. 2015. Using LiDAR for forest and fuel structure mapping: options, benefits, requirements and costs. East Melbourne: Bushfire and Natural Hazards CRC. [Internet] [accessed 2015 Jul 1]. Available from: http://www.bnhcrc.com.au/publications/biblio/bnh-1661
  • Zhang C, Zhou Y, Qiu F. 2015. Individual tree segmentation from LiDAR point clouds for urban forest inventory. Remote Sensing. 7:7892–7913.
  • Ziegler M, Konrad H, Hofrichter J, Wimmer A, Ruppert GS, Schardt M, Hyyppae JM. 2000. Assessment of forest attributes and single-tree segmentation by means of laser scanning. Laser Radar Technology and Applications. 4035:73–84.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.