244
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Compression and flexural properties of plantation-grown Eucalyptus pellita in Borneo, Malaysia. Potential for structural timber end use

, ORCID Icon, , , &
Pages 139-151 | Received 08 May 2021, Accepted 03 Jul 2021, Published online: 01 Sep 2021

References

  • Baillères H, Hopewell GP, McGavin RL. 2008. Evaluation of wood characteristics of tropical post-mid rotation plantation Eucalyptus cloeziana and E. pellita: part (c) Wood quality and structural properties. Melbourne (Australia): Forest and Wood Products Australia. Report PN07.3022-C. Available from: http://www.fwpa.com.au/images/resources/FWPA_PN07.3022_Part%20C_0.pdf
  • Belleville B, Redman A, Chounlamounty P, Phengthajam V, Xiong S, Boupha L, Ozarska B. 2018. Potential of veneer peeled from young eucalypts in Laos. BioResources. 13(4):7581–7594. doi:https://doi.org/10.15376/biores.13.4.7581-7594.
  • Bhat KM. 1998. Properties of fast-grown teak wood: impact on end-user’s requirements. Journal of Tropical Forest Products. 4(1):1–10.
  • Bhat KM. 2000. Timber quality of teak from managed tropical plantations with special reference to Indian plantations. Bois et Forêts des Tropiques. 263:6–16.
  • Boland DJ, Brooker MIH, Chippendale GM, Hall N, Hyland BPM, Johnston RD, Kleinig DA, Turner JD. 1984. Forest trees of Australia. 4th ed. Melbourne (Australia): Nelson/CSIRO Publishing.
  • Brawner JT, Bush DJ, Macdonell PF, Warburton PM, Clegg PM. 2010. Genetic parameters of red mahogany breeding populations grown in the tropics. Australian Forestry. 73(3):177–183. doi:https://doi.org/10.1080/00049158.2010.10676324.
  • Brawner JT, Jarapudin Y, Lapammu M, Rauf R, Boden D, Wingfield MJ. 2015. Evaluating the inheritance of Ceratocystis acaciivora symptom expression in a diverse Acacia mangium breeding population. Southern Forests. 77(1):83–90. doi:https://doi.org/10.2989/20702620.2015.1007412.
  • Brawner JT, Meder R, Lee DJ, Dieters M. 2012. Selection of Corymbia citriodora for pulp productivity. Southern Forests. 74(2):121–131. doi:https://doi.org/10.2989/20702620.2012.701418.
  • Burdon RD. 2010. Wood properties and genetic improvement of radiata pine. New Zealand Journal of Forestry Science. 55:22–27.
  • Castro F, Raigosa J. 2000. Growth and physical-mechanical properties of 17 years old teak (Tectona grandis) growing in San Joaquín, Abangares, Costa Rica. Agronomía Costarricense. 24(2):7–23.
  • Cause ML, Rudder EJ, Kynaston WT. 1989. Technical pamphlet no. 2: queensland Timbers – their nomenclature, density and lyctid susceptibility. Brisbane (Australia): Queensland Forest Service.
  • Cave ID, Walker JCF. 1994. Stiffness of wood in fast grown plantation softwoods: the influence of micro fibril angle. Forest Products Journal. 44(5):43–48.
  • Chowdhury MdQ, Ishiguri F, Hiraiwa T, Takashima Y, Iizuka K, Yokota S, Yoshizawa N. 2012. Radial variation of bending property in plantation grown Acacia auriculiformis in Bangladesh. Forest Science and Technology. 8(3):135–138. doi:https://doi.org/10.1080/21580103.2012.704961.
  • Cown DJ. 1992. Corewood (juvenile wood) in Pinus radiata – should we be concerned? New Zealand Journal of Forestry Science. 22:87–95.
  • Cown DJ, Dowling L. 2015. Juvenile wood and its implications. New Zealand Journal of Forestry Science. 59(4):10–17.
  • da Silva Guimarães LMS, Titon M, Lau D, Rosse LN, Oliveira LSS, Rosado CCG, Christo GGO, Alfenas AC. 2010. Eucalyptus pellita as a source of resistance to rust, Ceratocystis wilt and leaf blight. Crop Breeding and Applied Biotechnology. 10(2):124–131. doi:https://doi.org/10.12702/1984-7033.v10n02a04.
  • Debell DS, Keyes CR, Gartner BL. 2001. Wood density of Eucalyptus saligna grown in Hawaiian plantations: effects of silvicultural practices and relation to growth rate. Australian Forestry. 64:106–110. doi:https://doi.org/10.1080/00049158.2001.10676173.
  • Downes GM, Meder R, Harwood CE. 2010. A multi-site, multi-species NIR calibration for the prediction of cellulose content in eucalypt woodmeal. Journal of Near Infrared Spectroscopy. 18(6):381–387. doi:https://doi.org/10.1255/jnirs.910.
  • Downes GM, Meder R, Hicks C, Ebdon N. 2009. Developing and evaluating a multisite and multispecies NIR calibration for the prediction of Kraft pulp yield in eucalypts. Southern Forests. 71(2):155–164. doi:https://doi.org/10.2989/SF.2009.71.2.11.826.
  • Francis LP, McGavin RL. 2008. Evaluation of wood characteristics of tropical post-mid rotation plantation Eucalyptus cloeziana and E. pellita: part (a) natural durability of timber. Project report. Melbourne (Australia): Forest and Wood Products Australia Ltd.
  • Fukazawa K. 1984. Juvenile wood of hardwoods judged by density variation. IAWA Bulletin. 5:65–73. doi:https://doi.org/10.1163/22941932-90000861.
  • Harding K, Hopewell G, Davies M, Zbonak A. 2012. The wood properties of subtropical and tropical hardwood plantation timber grown for high-value products in Australia. Technical Report. Sandy Bay (Australia): Tasmania Cooperative Research Centre for Forestry.
  • Harwood CE. 1998. Eucalyptus pellita—an annotated bibliography. Collingwood (Australia): CSIRO Publishing.
  • Hein PRG, Chaix G, Clair B, Brancheriau L, Gril J. 2016. Spatial variation of wood density, stiffness and microfibril angle along Eucalyptus trunks grown under contrasting growth conditions. Trees. 30:871–882. doi:https://doi.org/10.1007/s00468-015-1327-8.
  • Hii SY, Ha KS, Ngui ML, Ak Penguang S Jnr, Duju A, Teng XY, Meder R. 2017. Assessment of plantation-grown Eucalyptus pellita in Borneo, Malaysia for solid wood utilisation. Australian Forestry. 80(1):26–33. doi:https://doi.org/10.1080/00049158.2016.1272526.
  • Hopewell GP, Atyeo WJ, McGavin RL. 2008. Evaluation of wood characteristics of tropical post-mid rotation plantation Eucalyptus cloeziana and E. pellita: part (d) veneer and plywood potential. Project Report. Melbourne (Australia): Forest and Wood Products Australia Ltd. Report PN07.3022-D. Available from: http://www.fwpa.com.au/images/resources/FWPA_PN07.3022_Part%20D.pdf
  • Hung TD, Brawner JT, Meder R, Lee DJ, Southerton SG, Thinh HH, Dieters MJ. 2015. Estimates of genetic parameters for growth and wood properties of Eucalyptus pellita F. Muell. to support tree breeding in Vietnam. Annals of Forest Science. 72(2):205–217. doi:https://doi.org/10.1007/s13595-014-0426-9.
  • Ishiguri F, Eizawa J, Saito Y, Iizuka K, Yokota S, Priadi D, Sumiasri N, Yoshizawa N. 2007. Variation in the wood properties of Paraserianthes falcataria planted in Indonesia. IAWA Journal. 28(3):339–348. doi:https://doi.org/10.1163/22941932-90001645.
  • ISO 13061-4. 2014. Physical and mechanical properties of wood — test methods for small clear wood specimens — part 4: determination of modulus of elasticity in static bending.
  • Ivković M, Wu HX, Kumar S. 2010. Bio-economic modeling as a method for determining economic weights for optimal multiple-trait tree selection. Silvae Genetica. 59:77–90. doi:https://doi.org/10.1515/sg-2010-0010.
  • Izekor DN, Fuwape JA, Oluyege AO. 2010. Effects of density on variations in the mechanical properties of plantation grown Tectona grandis wood. Archives of Applied Science Research. 2(6):113–120.
  • Japarudin Y, Lapammu M, Alwi A, Warburton P, Macdonell P, Boden D, Brawner J, Brown M, Meder R. 2020. Growth performance of selected taxa as candidate species for productive tree plantations in Borneo. Australian Forestry. 83(1):29–38. doi:https://doi.org/10.1080/00049158.2020.1727181.
  • Japarudin Y, Meder R, Chiu K-C, Lapammu M, Alwi A, Ghaffariyan M, Brown M. 2021. Veneering and sawing performance of plantation-grown Eucalyptus pellita, aged 7–23 years, in Borneo Malaysia. International Wood Products Journal. 12(2):116–127. doi:https://doi.org/10.1080/20426445.2020.1871275.
  • Jusoh I, Zaharin F, Adam N. 2013. Wood quality of acacia hybrid and second-generation Acacia mangium. BioResources. 9(1):150–160. doi:https://doi.org/10.15376/biores.9.1.150–160.
  • Kojima M, Hiroyuki Y, Koichiro S, Fabio MY, Masato Y, Saori Y, Takahisa N. 2011. Anatomical and chemical factors affecting tensile growth stress in Eucalyptus grandis plantations at different latitudes in Brazil. Canadian Journal of Forest Research. 42(1):134–140. doi:https://doi.org/10.1139/x11-161.
  • Lachenbruch B, Moore JR, Evans R. 2011. Radial variation in wood structure and function in woody plants, and hypotheses for its occurrence. In: Meinzer FC, Lachenbruch B, Dawson TE, editors. Size- and age-related changes in tree structure and function. Berlin (Germany): Springer; p. 121–164. doi:https://doi.org/10.1007/978-94-007-1242-3_5.
  • Lahr FAR, Nogueira MCDJA, De Araujo VA, Vasconcelos JS, Christoforo AL. 2017. Physical-mechanical characterization of Eucalyptus urophylla wood. Engenharia Agrícola. 37(5):900–906. doi:https://doi.org/10.1590/1809-4430-eng.agric.v37n5p900-906/2017.
  • Lasserre JP, Mason EG, Watt MS. 2005. The effects of different genetic populations and spacing on Pinus radiata corewood modulus of elasticity in an 11-year-old experiment. Forest Ecology and Management. 205:375–383. doi:https://doi.org/10.1016/j.foreco.2004.10.037.
  • Lasserre JP, Mason EG, Watt MS. 2008. Influence of the main and interactive effects of site, stand density and clone on Pinus radiata D. Don corewood modulus of elasticity. Forest Ecology and Management. 255:3455–3459. doi:https://doi.org/10.1016/j.foreco.2008.02.022.
  • Latifah S, Villanueva TR, Carandang MG, Bantayan NC, Florece LM. 2014. Predicting growth and yield models for eucalyptus species in Aek Nauli, North Sumatera, Indonesia. Agriculture, Forestry and Fisheries. 3(4):209–216. doi:https://doi.org/10.11648/j.aff.20140304.11.
  • Lim SC, Chung RCK, Wong TM. 2002. A dictionary of Malaysian timbers. Kuala Lumpur (Malaysia): Forest Research Institute Malaysia. Malayan Forest Records No. 30.
  • Lim SC, Gan KS, Choo KT. 2014. The characteristics, properties and uses of plantation timbers –rubberwood and Acacia mangium. Kuala Lumpur (Malaysia): Timber Technology Centre (TTC), Forest Research Institute Malaysia.
  • Lukmandaru G, Zumaini UF, Soeprijadi D, Nugroho WD, Susanto M. 2016. Chemical properties and fiber dimension of Eucalyptus pellita from the 2nd generation of progeny tests in Pelaihari, South Borneo, Indonesia. Journal of the Korean Wood Science and Technology. 44(4):571–588. doi:https://doi.org/10.5658/WOOD.2016.44.4.571.
  • Mahmud SZ, Hashim R, Saleh AH, Sulaiman O, Saharudin NI, Lokmal N, Masseat K, Husain H. 2017. Physical and mechanical properties of juvenile wood from Neolamarckia cadamba planted in west Malaysia. Maderas, Ciencia y Tecnología. 19(2):225–238. doi:https://doi.org/10.4067/S0718-221X2017005000020.
  • Mohd Omar MK, Mohd Jamil AW. 2011. Mechanical properties. In: Lim SC, Gan KS, Tan YE, editors. Properties of Acacia mangium planted in peninsular Malaysia. ITTO project on improving utilization and value adding of plantation timbers from sustainable sources in Malaysia. Kuala Lumpur (Malaysia): Forest Research Institute Malaysia. Project no. PD 306/04(1). p. 111.
  • Mohmod AL, Khoo KC, Kasim J, Ahmad AJH. 1994. Fibre morphology and chemical properties of Gigantochloa scortechinii. Journal of Tropical Forest Science. 6(4):397–407.
  • MS 544; Part 2. 2001. Code of practice for structural use of timber: part 2: permissible stress design of solid timber (1st revision). Shah Alam (Malaysia): Department of Standards Malaysia.
  • MTIB. 2009. Malaysian grading rules for sawn hardwood timber. Kuala Lumpur (Malaysia): Malaysian Timber Industry Board.
  • Nakada R, Fujisawa Y, Hirakawa Y. 2003. Effects of clonal selection by microfibril angle on the genetic improvement of stiffness in Cryptomeria japonica D. Don. Holzforschung 57(5):553–560. doi:https://doi.org/10.1515/HF.2003.082.
  • Nicholson JE, Hillis WE, Ditchburne N. 1975. Some tree growth – wood property relationships of eucalypts. Canadian Journal of Forest Research. 5(3):424–432. doi:https://doi.org/10.1139/x75-059.
  • Norton J, Muneri A. 2002. The relationship between basic density and liquid absorption in fast, plantation grown 8-year-old Eucalyptus pellita and E. urophylla. Stockholm (Sweden): International Research Group for Wood Protection. IRG Document IRG/WP02-40220.
  • Prasetyo A, Aiso H, Futoshi I, Wahyudi I, Wigaya IPG, Ohshima J, Yokata S. 2017. Variations on growth characteristics and wood properties of three Eucalyptus species planted for pulpwood in Indonesia. Tropics. 26(2):59–69. doi:https://doi.org/10.3759/tropics.MS16-15.
  • Punches J. 2004. Tree growth, forest management, and their implications for wood quality. Corvallis (OR): Pacific Northwest Extension. PNW576. Available from: https://catalog.extension.oregonstate.edu/sites/catalog/files/project/pdf/pnw576.pdf
  • Ratnasingam J, Latib HA, Paramjothy N, Liat LC, Nadarajah M, Ioras F. 2020. Plantation forestry in Malaysia: an evaluation of its successes and failures since the 1970. Notulae Botanicae Horti Agrobotanici Cluj-Napoca. 48(4):1789–1801. doi:https://doi.org/10.15835/48412167.
  • Rocha MFV, Vital BR, De Carneiro ACO, Carvalho AMML, Cardoso MT, Hein PRG. 2016. Effects of plant spacing on the physical, chemical and energy properties of eucalyptus wood and bark. Journal of Tropical Forest Science. 28(3):243–248.
  • Roque RM, Muñoz-Acosta F. 2010. Physical and mechanical properties of eight fast-growing plantation species in Costa Rica. Journal of Tropical Forest Science. 22(4):317–328.
  • Roth B, Li X, Huber DA, Peter G. 2007. Effects of management intensity, genetics and planting density on wood stiffness in a plantation of juvenile loblolly pine in the southeastern USA. Forest Ecology and Management. 246:155–162. doi:https://doi.org/10.1016/j.foreco.2007.03.028.
  • Roux J, Wingfield MJ. 2009. Ceratocystis species: emerging pathogens of non-native plantation Eucalyptus and Acacia species. Southern Forest. 71:115–120. doi:https://doi.org/10.2989/SF.2009.71.2.5.820.
  • Shakti C, Walker JCF. 2011. Wood quality in artificially inclined 1-year-old trees of Eucalyptus regnans – differences in tension wood and opposite wood properties. Canadian Journal of Forest Research. 41(5):930–937. doi:https://doi.org/10.1139/x11-016.
  • Sharmin A, Ashaduzzaman M, Shansuzzaman M. 2015. Variations of the physical and mechanical wood properties of Swietenia macrophylla in mixed and monoculture plantations. International Research Journal of Engineering and Technology. 2(5):692–697.
  • Susilawati S, Marsoem N. 2006. Variation in wood physical properties of Eucalyptus pellita growing in seedling seed orchard in Pleihari, South Kalimantan. Indonesian Journal of Forestry Research. 3(2):123–138. doi:https://doi.org/10.20886/ijfr.2006.3.2.123-138.
  • Tarigan M, Van WM, Roux J, Tjahjono B, Wingfield MJ. 2010. Three new Ceratocystis spp. in the Ceratocystis moniliformis complex from wounds on Acacia mangium and A. crassicarpa. Mycoscience. 51:53–67. doi:https://doi.org/10.1007/S10267-009-0003-5.
  • Tarigan M, Wingfield MJ, Van Wyk M, Tjahjono B, Wingfield MJ. 2011. A new wilt and die-back disease of Acacia mangium associated with Ceratocystis manginecans and C. acaciivora sp. nov. in Indonesia. South African Journal of Botany. 77(2):292–304. doi:https://doi.org/10.1016/j.sajb.2010.08.006.
  • Thulasidis PK, Bhat KM. 2012. Mechanical properties and wood structure characteristics of 35-year-old home-garden teak from wet and dry localities of Kerala, India in comparison with plantation teak. Journal of the Indian Academy of Wood Science. 9(1):23–32. doi:https://doi.org/10.1007/s13196-012-0062-7.
  • Wanneng PX, Ozarska B, Daian MS. 2014. Physical properties of Tectona grandis grown in Laos. Journal of Tropical Forest Science. 26(3):389–396.
  • Warren E, Smith G, Apiolaza L, Walker JCF. 2009. Effect of stocking on juvenile wood stiffness for three Eucalyptus species. New Forests. 37:241–250. doi:https://doi.org/10.1007/s11056-008-9120-9.
  • Wilkes J. 1987. Review of the significance of variations in wood structure in the utilization of Pinus radiata. Australian Forest Research. 17:215–232.
  • Wu HX, Ivkovich M, Gapare WJ, Matheson AC, Baltunis BS, Powell MB, McRae TA. 2008. Breeding for wood quality and profit in radiata pine: a review of genetic parameters and implication for breeding and deployment. New Zealand Journal of Forest Science. 38:56–87.
  • Yuniarti K, Nirsatmanto A. 2018. Several physical properties of Eucalyptus pellita F. Muell from different provenances and sampling position on tree. Jurnal Penelitian Kehutanan Wallacea. 7(2):151–163.
  • Zhu J, Tadooka N, Takata K, Koizumi A. 2005. Growth and wood quality of sugi (Cryptomeria japonica) planted in Akita prefecture (II): juvenile/mature wood determination of aged trees. Journal of Wood Science. 51:95–101. doi:https://doi.org/10.1007/s10086-004-0623-5.
  • Zobel BJ, Sprague JR. 1998. The importance of juvenile wood. In: Juvenile wood in forest trees. Springer series in wood science. Berlin, Heidelberg (Germany): Springer. doi:https://doi.org/10.1007/978-3-642-72126-7_7.
  • Zobel BJ, van Buijtenen JP. 1989. Wood variation: its causes and control. Berlin, Heidelberg (Germany): Springer-Verlag.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.