Publication Cover
Automatika
Journal for Control, Measurement, Electronics, Computing and Communications
Volume 63, 2022 - Issue 4
1,210
Views
13
CrossRef citations to date
0
Altmetric
Regular Papers

A metaheuristic approach for interval type-2 fuzzy fractional order fault-tolerant controller for a class of uncertain nonlinear system*

ORCID Icon &
Pages 656-675 | Received 27 Jul 2020, Accepted 25 Mar 2022, Published online: 15 Apr 2022

References

  • Pannu HS, Singh D, Malhi AK. Improved particle swarm optimization based adaptive neuro-fuzzy inference system for benzene detection. CLEAN-Soil Air Water. 2018;46(5):1700162. Article ID. DOI: https://doi.org/10.1002/clen.201700162
  • Yang XS. Flower pollination algorithm for global optimization. Unconventional computation and natural computation. 2012. p. 240–249. (Lecture Notes in Computer Science; 7445).
  • Himanshukumar RP, Vipul AS. Actuator and system component fault tolerant control using interval type-2 Takagi-Sugeno fuzzy controller for hybrid nonlinear process. Int J Hybrid Intell Syst. 2019;15(3):143–153.
  • Himanshukumar RP, Vipul AS. A fault-tolerant control strategy for non-linear system: an application to the two tank canonical noninteracting level control system. IEEE Distributed Computing, VLSI, Electrical Circuits and Robotics (DISCOVER-2018); Mangalore (Mangaluru), India, 13–14 Aug 2018. p. 64–70.
  • Himanshukumar RP, Vipul AS. A passive fault-tolerant control strategy for a non-linear system: an application to the two tank conical non-interacting level control system. MASKAY. 2019;9(1):1–8. DOI: https://doi.org/10.24133/maskay.v9i1.1094.
  • Himanshukumar RP, Vipul AS. A framework for fault-tolerant control for an interacting and non-interacting level control system using AI. In Proceedings of the 15th International Conference on Informatics in Control, Automation and Robotics – Volume 1: ICINCO; p. 180–190. ISBN 978-989-758-321-6.
  • Himanshukumar RP, Vipul AS. Fuzzy logic based passive fault tolerant control strategy for a single-tank system with system fault and process disturbances. 5th International Conference on Electrical and Electronic Engineering (ICEEE-2018); Istanbul: 2018, p. 257–262.
  • Mohammad S. PID control for Industrial processes. London: IntechOpen; 2018. DOI: https://doi.org/10.5772/intechopen.69592.
  • Kadu CB, Patil CY. Design and implementation of stable PID controller for interacting level control system. Procedia Comput Sci. 2016;79:737–746.
  • Prusty S, Pati UC, Mahapatra K. Implementation of fuzzy-PID controller to liquid level system using LabVIEW. International Conference on Control, Instrumentation, Energy and Communication, (CIEC 2014); p. 36–40.
  • Himanshukumar RP, Vipul AS. Passive fault tolerant control system using feed-forward neural network for two-Tank interacting conical level control system against partial actuator failures and disturbances. IFAC–PapersOnLine. 2019;52(14):141–146.
  • Himanshukumar RP, Vipul AS. Fault tolerant control systems: a passive approaches for single tank level control system, i-manager's. J Instrumentation Control Eng. 2018;6(1):11–18.
  • Bhawna T, Randeep K. Genetic algorithm based parameter tuning of PID controller for composition control system. Int J Eng Sci Technol. 2011;3(8):6705–6711.
  • Anju KV, Ruban N. Particle swarm optimization based PID controller tuning for level control of two tank system. 14h ICSET-2017, IOP Conf. Series: Materials Science and Engineering; Vol. 263, 2017. p. 1–7.
  • Latha K, Rajinikanth V, Surekha PM. PSO-Based PID controller design for a class of stable and unstable systems. ISRN Artificial Intelligence. 2013;543607:00–Article ID.
  • Himanshukumar RP, Vipul AS. Fault tolerant controller using interval type-2 TSK logic control systems: application to three interconnected conical tank system. In: Kearfott R, Batyrshin I, Reformat M, editors. Fuzzy techniques: theory and applications. IFSA/NAFIPS 2019. Cham: Springer; 2019. (Advances in Intelligent Systems and Computing; 1000).
  • Himanshukumar RP, Vipul AS. Fault tolerant control using interval type-2 Takagi-Sugeno fuzzy controller for nonlinear system. In: Abraham A, Cherukuri A, Melin P, editors. Intelligent systems design and applications. ISDA 2018. Cham: Springer; 2018. (Advances in Intelligent Systems and Computing; 941).
  • Patel HR, Raval SK, Shah VA. A novel design of optimal intelligent fuzzy TID controller employing GA for nonlinear level control problem subject to actuator and system component fault. Int J Intell Comput Cybern. 2021;14(1):17–32.
  • Patel HR, Shah VA. Stable fuzzy controllers via LMI approach for non-linear systems described by type-2 T-S fuzzy model. Int J Intell Comput Cybern. 2021;14(3):509–531.
  • Himanshukumar RP, Vipul AS. Fault detection and diagnosis methods in power generation plants – the Indian power generation sector perspective: an introductory review. J Energy Manag. 2018;2:31–39.
  • Lurie BJ. Three-parameter tunable tilt-integral-derivative (TID) Controller. United States Patent; 1994.
  • Himanshukumar RP, Vipul AS. An optimized intelligent fuzzy fractional order TID controller for uncertain level control process with actuator and system component uncertainty. In: Bede B, Ceberio M, De Cock M, editiors. Fuzzy information processing 2020. NAFIPS 2020. Cham: Springer; 2022. p. 183–195. (Advances in Intelligent Systems and Computing; 1337). DOI: https://doi.org/10.1007/978-3-030-81561-5_16.
  • Himanshukumar RP, Vipul AS. Comparative study of interval type-2 and type-1 fuzzy genetic and flower pollination algorithms in optimization of fuzzy fractional order PIλDμ controllers. Intelligent system and computing, Yang (Cindy) Yi. (January 3rd 2020). IntechOpen. DOI: https://doi.org/10.5772/intechopen.90359.
  • Lakshmanaprabu SK, Nasir AV, BanuSabura U. Design of centralized fractional order PI controller for two interacting conical frustum tank level process. J Appl Fluid Mech. 2017;10:23–32.
  • Garcia D, Karimi A, Longchamp R. PID controller design for multivariable systems using Gershgorin bands. IFAC Proc. 2005;38(1):183–188.
  • Dittmar R, Gill S, Singh H, et al. Robust optimization-based multi-loop PID controller tuning: a new tool and its industrial application. Control Eng Pract. 2012 Apr;20(4):355–370.
  • Euzébio TAM, Barros PR. Iterative procedure for tuning decentralized PID controllers. IFAC-PapersOnLine. 2015;48(8):1180–1185.
  • Naik RH, Kumar DVA, Rao PVG. Improved centralised control system for rejection of loop interaction in coupled tank system. Indian Chem Eng. 2020;62(2):118–137.
  • Lakshmanaprabu SK, Elhoseny M, Shankar K. Optimal tuning of decentralized fractional order PID controllers for TITO process using equivalent transfer function. Cogn Syst Res. 2019 Dec;58:292–303.
  • Aparna V, Hussain K. M, Jamal DN, et al. Implementation of gain scheduling multiloop PI controller using optimization algorithms for a dual interacting conical tank process. Proc. 2nd Int. Conf. Trends Electron. Informat. (ICOEI); 2018 May. p. 598–603.
  • Euzébio TAM, Silva MTD, Yamashita AS. Decentralized PID controller tuning based on nonlinear optimization to minimize the disturbance effects in coupled loops. IEEE Access. 2021;9:156857–156867.
  • Euzébio TA, Yamashita AS, Pinto TV, et al. SISO approaches for linear programming based methods for tuning decentralized PID controllers. J Process Control. 2020;94:75–96.
  • Nadweh S, Khaddam O, Hayek G, et al. Optimization of P & PI controller parameters for variable speed drive systems using a flower pollination algorithm. Heliyon. 2020;6:e04648–
  • Nayak PSR, Rufzal TA. Flower pollination algorithm based PI controller design for induction motor scheme of soft-Starting. 2018 20th National Power Systems Conference (NPSC); 2018. p. 1–6.
  • Castelo Damasceno N, Gabriel Filho O. PI controller optimization for a heat exchanger through metaheuristic bat algorithm, particle swarm optimization, flower pollination algorithm and Cuckoo search algorithm. IEEE Latin America Trans. 2017;15:1801–1807.
  • Himanshukumar RP, Vipul AS. A novel design of centralized fractional order PID controller and its optimal time domain tuning: a hybrid two interacting conical frustum tank level process case study. Memorias del Congreso Nacional de Control Autom Atico (CNCA 2019); Puebla, Mexico 23–25 de octubre de 2019. p. 754–761, ISBN 2594–2492.
  • Himanshukumar RP, Vipul AS. A fractional and integer order PID controller for nonlinear system: two non-interacting conical tank process case study. In: Mehta A, Rawat A, Chauhan P, editors. Advances in control systems and its infrastructure. Singapore: Springer; p. 37–55. (Lecture Notes in Electrical Engineering; 604).
  • Himanshukumar RP, Vipul AS. General type-2 fuzzy logic systems using shadowed sets: a new paradigm towards fault-tolerant control. 2021 Australian & New Zealand Control Conference (ANZCC); 2021. p. 116–121.
  • Himanshukumar RP., Vipul AS. Stable fault tolerant controller design for Takagi-Sugeno fuzzy model-Based control systems via linear matrix inequalities: three conical tank case study. Energies. 2019;12(11):2221.
  • Maalej I, Abid DBH, Rekik C. Active fault tolerant control design for stochastic interval type-2 Takagi-Sugeno fuzzy model. Int J Intell Comput Cybern. 2018;11(3):404–422.
  • Mendel JM, John RI, Liu F. Interval type-2 fuzzy logic systems made simple. IEEE Trans Fuzzy Syst. 2006;14:808–821.
  • Mendel JM, Hagras H, John RI. Standard background material about interval type-2 fuzzy logic systems that can be used by all authors. IEEE Comput Intell Soc. 2010;1–11.
  • H Hagras. A hierarchical type-2 fuzzy logic control architecture for autonomous mobile robots. IEEE Trans Fuzzy Syst. 2004;12:524–539.
  • Wu H, Mendel IM. Uncertainty bounds and their use in the design of interval type-2 fuzzy logic systems. IEEE Trans Fuzzy Syst. 2002;10(5):622–639.
  • Glover BJ. Understanding flowers and flowering: an integrated approach. Oxford: Oxford University Press; 2007. DOI: https://doi.org/10.1093/acprof:oso/9780198565970.001.0001.
  • Willmer P. Pollination and floral ecology. Princeton, NJ: Princeton University Press; 2011.
  • Balasubramani K, Marcus K. A study on flower pollination algorithm and its applications. Int J Appl Innov Eng Manag (IJAIEM). 2014;3:320–325.
  • Abdel-Raouf O, Abdel-Baset M. A new hybrid flower pollination algorithm for solving constrained global optimization problems. Int J Appl Oper Res-An Open Access J. 2014;4(2):1–13.
  • Man KF, Tang KS, Kwong S. Genetic algorithms: concepts and applications. IEEE Trans Indust Electron. 1996;43(5):519–534. [cited: 2018 Aug 2].
  • Fevrier V, Patricia M, Oscar C. Fuzzy logic for parameter tuning in evolutionary computation and bio-inspired methods, Berlin Heidelberg: Springer-Verlag; 2010. 465–474. (LNAI; 1648) [cited 2018 Aug 22].
  • Bernd F, Michael H. Optimization of genetic algorithms by genetic algorithms. Artificial neural nets and genetic algorithms. Vienna: Springer; 1993. [cited 2018 Aug 28].
  • Kumbasar T, Hagras H. Big bang-big crunch optimization based interval type-2 fuzzy PID cascade controller design strategy. Inf Sci. 2014;282:277–295.
  • Sambariya DK, Gupta T. Optimal design of PID controller for an AVR system using monarch butterfly optimization. 2017 International Conference on Information, Communication, Instrumentation and Control (ICICIC); 2017. p. 1–6.
  • Taskin A, Kumbasar T. An open source matlab/simulink tool box for interval type-2 fuzzy logic systems. 2015 IEEE Symp Ser Comput Intell; 2015. p. 1561–1580.
  • Mendel JM. Rule-Based fuzzy logic systems: introduction end new directions. NI: Prentice-Hall; 2001.
  • Himanshukumar RP, Vipul AS. Passive fault–Tolerant tracking for nonlinear system with intermittent fault and time delay. IFAC–PapersOnLine. 2019;52(11):200–205.
  • Latha K, Rajinikanth V, Surekha PM. Application of ant colony optimization in tuning a PID controller to a conical tank. Indian J Sci Technol. 2015;8(S2):217.
  • Himanshukumar RP, Vipul AS. Comparative study between fractional order PIλDμ and integer order PID controller: a case study of coupled conical tank system with actuator faults. 2019 4th Conference on Control and Fault Tolerant Systems (SysTol); Casablanca, Morocco: 2019. p. 390–396.
  • Patel Himanshukumar Rajendrabhai. Fuzzy-based metaheuristic algorithm for optimization of fuzzy controller: fault-tolerant control application. International Journal of Intelligent Computing and Cybernetics. 2022;13:93), https://doi.org/https://doi.org/10.1108/IJICC-09-2021-0204.