Publication Cover
Automatika
Journal for Control, Measurement, Electronics, Computing and Communications
Volume 65, 2024 - Issue 1
514
Views
1
CrossRef citations to date
0
Altmetric
Regular Paper

Robust predictive compensation control for lateral magnetorheological semi-active suspension of high-speed trains with time delay

&
Pages 14-33 | Received 20 Jun 2022, Accepted 08 Oct 2023, Published online: 21 Nov 2023

Reference

  • Li WF, Xie ZC, Zhao J, et al. Fuzzy finite-frequency output feedback control for nonlinear active suspension systems with time delay and output constraints. Mech Syst Signal Proc. 2019;132:315–334. doi: 10.1016/j.ymssp.2019.06.018
  • Liu YJ, Zeng Q, Tong SC, et al. Adaptive neural network control for active suspension systems with time-varying vertical displacement and speed constraints. IEEE Trans Ind Electron. 2019;66(12):9458–9466. doi:10.1109/TIE.2019.2893847
  • Ata WG, Salem AM. Semi-active control of tracked vehicle suspension incorporating magnetorheological dampers. Veh Syst Dyn. 2017;55(5):626–647. doi:10.1080/00423114.2016.1273531
  • Biglarbegian M, Melek W, Golnaraghi F. A novel neuro-fuzzy controller to enhance the performance of vehicle semi-active suspension systems. Veh Syst Dyn. 2008;46(8):691–711. doi:10.1080/00423110701585420
  • Sun SS, Yang J, Li WH, et al. Development of a novel variable stiffness and damping magnetorheological fluid damper. Smart Mater Struct. 2015;24(8):085021, doi:10.1088/0964-1726/24/8/085021
  • Karnopp D, Crosby MJ, Harwood RA. Vibration control using semi-active force generators. J Eng Ind-Trans ASME. 1974;96(2):619–626. doi:10.1115/1.3438373
  • Rakheja S, Sankar S. Vibration and shock isolation performance of a semi-active “On–Off” damper. J Vibr Acoust Stress Reliab Des. 1985;107(4):398–403. doi:10.1115/1.3269279
  • Valasek M, Novak M, Sika Z, et al. Extended ground-hook – new concept of semi-active control of truck's suspension. Veh Syst Dyn. 1997;27(5–6):289–303. doi:10.1080/00423119708969333
  • Ahmadian M, Song XB, Southward SC. No-jerk skyhook control methods for semiactive suspensions. J Vib Acoust-Trans ASME. 2004;126(4):580–584. doi:10.1115/1.1805001
  • Savaresi SM, Silani E, Bittanti S. Acceleration-driven-damper (ADD): an optimal control algorithm for comfort-oriented semiactive suspensions. J Dyn Syst Meas Control-Trans ASME. 2005;127(2):218–229. doi:10.1115/1.1898241
  • Wang DH, Liao WH. Semi-active suspension systems for railway vehicles using magnetorheological dampers. Part I: system integration and modelling. Veh Syst Dyn. 2009;47(11):1305–1325. doi:10.1080/00423110802538328
  • Wang DH, Liao WH. Semi-active suspension systems for railway vehicles using magnetorheological dampers. Part II: simulation and analysis. Veh Syst Dyn. 2009;47(12):1439–1471. doi:10.1080/00423110802538336
  • Chen CJ, Wang KY. Modeling and analysis of lateral semi-active suspension system of high-speed train. J Vib Shock. 2006;4(04):151–154–169 + 184. doi: 10.13465/j.cnki.jvs.2006.04.041
  • Zong LH, Gong XL, Xuan SH, et al. Semi-active H∞ control of high-speed railway vehicle suspension with magnetorheological dampers. Veh Syst Dyn. 2013;51(5):600–626. doi:10.1080/00423114.2012.758858
  • Koo JH, Goncalves FD, Ahmadian M. A comprehensive analysis of the response time of MR dampers. Smart Mater Struct. 2006;15(2):351–358. doi:10.1088/0964-1726/15/2/015
  • Cha YJ, Agrawal AK, Dyke SJ. Time delay effects on large-scale MR damper based semi-active control strategies. Smart Mater Struct. 2013;22(1):015011. doi: 10.1088/0964-1726/22/1/015011
  • Zhao YS, Zhou KK, Li ZX, et al. Time lag of magnetorheological damper semi-active suspensions. J Mech Eng Chin Ed. 2009;45(7):221–227. doi:10.3901/JME.2009.07.221
  • Zhu MF, Lv G, Zhang CP, et al. Delay-dependent sliding mode variable structure control of vehicle magneto-rheological semi-active suspension. IEEE Access. 2022;10:51128–51141. doi:10.1109/ACCESS.2022.3173605
  • Wang YM. Research on control of semi-active suspension of high speed railway vehicles [dissertation]. Chengdu: Southwest Jiaotong University; 2002.
  • Qin YC, Zhao F, Wang ZF, et al. Comprehensive analysis for influence of controllable damper time delay on semi-active suspension control strategies. J Vib Acoust-Trans ASME. 2017;139(3):031006, doi:10.1115/1.4035700
  • Liao YY, Liu YQ, Yang SP. Semiactive control of high-speed railway vehicle suspension systems with magnetorheological dampers. Shock Vib. 2019;2019:5279380. doi: 10.1155/2019/5279380
  • Zhang ZY, Wang JB, Wu WG, et al. Semi-active control of air suspension with auxiliary chamber subject to parameter uncertainties and time-delay. Int J Robust Nonlinear Control. 2020;30(17):7130–7149. doi:10.1002/rnc.5169
  • Wang JC, Lv LF, Ren JY, et al. Time delay compensation control using a Taylor series compound robust scheme for a semi-active suspension with magneto rheological damper. Asian J Control. 2022;24(5):2632–2648. doi: 10.1002/asjc.2674
  • Du HP, Sze KY, Lam J. Semi-active H∞ control of vehicle suspension with magneto-rheological dampers. J Sound Vibr. 2005;283(3–5):981–996. doi:10.1016/j.jsv.2004.05.030
  • Li HY, Liu HH, Gao HJ, et al. Reliable fuzzy control for active suspension systems with actuator delay and fault. IEEE Trans Fuzzy Syst. 2012;20(2):342–357. doi:10.1109/TFUZZ.2011.2174244
  • Li HY, Jing XJ, Karimi HR. Output-feedback-based H∞ control for vehicle suspension systems with control delay. IEEE Trans Ind Electron. 2014;61(1):436–446. doi:10.1109/TIE.2013.2242418
  • Afshar KK, Javadi A, Jahed-Motlagh MR. Robust H∞ control of an active suspension system with actuator time delay by predictor feedback. IET Contr Theory Appl. 2018;12(7):1012–1023. doi:10.1049/iet-cta.2017.0970
  • Chen CJ. Active and semi-active control of high-speed trains. Chendu: Southwest Jiaotong University Press; 2015.
  • Claus H, Schiehlen W. Modeling and simulation of railway bogie structural vibrations. Veh Syst Dyn. 1998;29:538–552. doi:10.1080/00423119808969585
  • Chen CJ, Li HC. Track irregularity simulation in frequency domain sampling. J China Railw Soc. 2006;3(03):38–42.
  • Spencer BF, Dyke SJ, Sain MK, et al. Phenomenological model for magnetorheological dampers. J Eng Mech-ASCE. 1997;123(3):230–238. doi:10.1061/(ASCE)0733-9399(1997)123:3(230)
  • Smith OJM. A controller to overcome dead time. ISA Trans. 1959;6(2):28–33.
  • Golestan S, Guerrero JM, Abusorrah AM. MAF-PLL with phase-lead compensator. IEEE Trans Ind Electron. 2015;62(6):3691–3695. doi: 10.1109/tie.2014.2385658
  • Chen PC, Tsai KC. Dual compensation strategy for real-time hybrid testing. Earthq Eng Struct Dyn. 2013;42(1):1–23. doi:10.1002/eqe.2189
  • Tavazoei MS, Tavakoli-Kakhki M. Compensation by fractional-order phase-lead/lag compensators. IET Contr Theory Appl. 2014;8(5):319–329. doi:10.1049/iet-cta.2013.0138
  • Savaresi SM, Spelta C. Mixed sky-hook and ADD: approaching the filtering limits of a semi-active suspension. J Dyn Syst Meas Control-Trans ASME. 2007;129(4):382–392. doi:10.1115/1.2745846
  • Wang FT. Vehicle system dynamics. Beijing: China Railway Publishing House; 1994.
  • Zhai WM, Han ZL, Chen ZW, et al. Train-track-bridge dynamic interaction: a state-of-the-art review. Veh Syst Dyn. 2019;57(7):984–1027. doi:10.1080/00423114.2019.1605085
  • Kahya V, Araz O. Series tuned mass dampers in train-induced vibration control of railway bridges. Struct Eng Mech. 2017;61(4):453–461. doi:10.12989/sem.2017.61.4.453
  • Araz O, Kahya V. Series tuned mass dampers in vibration control of continuous railway bridges. Struct Eng Mech. Jan 2020;73(2):133. doi: 10.12989/sem.2020.73.2.133
  • Kahya V, Araz O. A simple design method for multiple tuned mass dampers in reduction of excessive vibrations of high-speed railway bridges. J Fac Eng Archit Gazi Univ. 2020;35(2):607–618. doi: 10.17341/gazimmfd.493102
  • Araz O, Kahya V. Optimization of multiple tuned mass dampers for a two-span continuous railway bridge via differential evolution algorithm. Structures. 2022;39:29–38. doi:10.1016/j.istruc.2022.03.021
  • Hua YY, Zhu SY, Shi X. High-performance semiactive secondary suspension of high-speed trains using negative stiffness and magnetorheological dampers. Veh Syst Dyn. 2022;60(7):2290–2311. doi:10.1080/00423114.2021.1899251