616
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Declines in invertebrates and birds – could they be linked by climate change?

&
Pages 59-71 | Received 06 Jan 2022, Accepted 03 Oct 2022, Published online: 09 Jan 2023

References

  • Anderson, G.Q.A., Gruar, D.J., Wilkinson, N.I. & Field, R.H. 2002. Tree sparrow Passer montanus chick diet and productivity in an expanding colony. Asp. Appl. Biol. 67: 35–42.
  • Ball, S.G. & Morris, R.K.A. 2021. Recent range expansion in British hoverflies (Diptera, Syrphidae). Dipterists Digest (Second Series) 28: 59–87.
  • Balmer, D.E., Gillings, S., Caffrey, B.J., Swann, R.L., Downie, I.S. & Fuller, R.J. 2013. Bird Atlas 2007–11: the breeding and wintering birds of Britain and Ireland. BTO, Thetford.
  • Bantock, T. 2010. Information Sheet: The Bee-Wolf (Philanthus triangulum). Hymettus-BWARS https://www.bwars.com/sites/www.bwars.com/files/info_sheets/Philanthus-triangulum-infosheet.pdf. Accessed on 7 May 2021.
  • Barras, A.G., Niffenegger, C.A., Candolfi, I., Hunziker, Y.A. & Arlettaz, R. 2021. Nestling diet and parental food provisioning in a declining mountain passerine reveal high sensitivity to climate change. J. Avian Biol. 52: 02649.
  • Beale, C.M., Burfield, I.J., Sim, I.M.W., Rebecca, G.W., Pearce-Higgins, J.W. & Grant, M.C. 2006. Climate change may account for the decline in British ring ouzels Turdus torquatus. J. Anim. Ecol. 75: 826–835.
  • Bell, J.R., Blumgart, D. & Shortall, C.R. 2020. Are insects declining and at what rate? An analysis of standardised, systematic catches of aphid and moth abundances across Great Britain. Insect Conserv. Divers. 13: 115–126.
  • Bell, J.R., lderson, L., Izera, D., Kruger, T., Parker, S., Pickup, J., Shortall, C.R., Taylor, M.S., Verrier, P. & Harrington, R. 2015. Long-term phenological trends, species accumulation rates, aphid traits and climate: five decades of change in migrating aphids. J. Anim. Ecol. 84: 21–34.
  • Benton, T.G., Bryant, D.M. & Crick, H.Q.P. 2002. Linking agricultural practice to insect and bird populations: a historical study over three decades. J. Appl. Ecol. 39: 673–687.
  • Biesmeijer, J., Roberts, S., Reeme, M., Ohlemüller, R., Edwards, M., Peeters, T., Schaffers, A.P., Potts, S., Kleukers, R., Thomas, C., Settele, J. & Kunin, W. 2006. Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313: 351–354.
  • Blackshaw, R.P. & Petrovskii, S.V. 2007. Limitation and regulation of ecological populations: a meta-analysis of Tipula paludosa field data. Math. Model. Nat. Phenom. 2: 46–62.
  • Both, C., Bouwhuis, S., Lessells, C.M. & Visser, M.E. 2006. Climate change and population declines in a long distance migratory bird. Nature 441: 81–83.
  • Bowgen, K.M., Kettle, E.F., Butchart, S.H.M., Carr, J.A., Foden, W.B., Magin, G., Morecroft, M.D., Smith, R.K., Stein, B.A., Sutherland, W.J., Thaxter, C.B. & Pearce-Higgins, J.W. 2022. Conservation interventions can benefit species impacted by climate change. Biol. Conserv. 269: 109524.
  • Bowler, D.E., Heldbjerg, H., Fox, A.D., de Jong, M. & Böhning-Gaese, K. 2019. Long-term declines of European insectivorous bird populations and potential causes. Conserv. Biol. 33: 1120–1130.
  • Brickle, N.W., Harper, D.G.C., Aebischer, N.J. & Cockayne, S.H. 2001. Effects of agricultural intensification on the breeding success of corn buntings Miliaria calandra. J. Appl. Ecol. 37: 742–755.
  • Bried, J., Ries, L., Smith, B., Patten, M., Abbott, J., Ball-Damerow, J., Cannings, R., Cordero-Rivera, A., Córdoba-Aguilar, A., De Marco Jr, P., Dijkstra, K.-D., Dolný, A., van Grunsven, R., Halstead, D., Harabiš, F., Hassall, C., Jeanmougin, M., Jones, C., Juen, L., Kalkman, V., Kietzka, G., Mazzacano, G.S., Orr, A., Perron, M.A., Rocha-Ortega, M., Sahlén, G., Samways, M., Siepielski, A., Simaika, J., Suhling, F., Underhill, L. & White, E. 2020. Towards global volunteer monitoring of odonate abundance. BioScience 70: 914–923.
  • Brooks, D.R., Bater, J.E., Clark, S.J., Monteith, D.T., Andrews, C., Corbett, S.J., Beaumont, D.A. & Chapman, J.W. 2012a. Large carabid beetle declines in a United Kingdom monitoring network increases evidence for a widespread loss in insect biodiversity. J. Appl. Ecol. 49: 1009–1019.
  • Brooks, S.J., Jones, V.J., Telford, R.J., Appleby, P.G., Watson, E., McGowan, S. & Benn, S. 2012b. Population trends in the Slavonian grebe Podiceps auratus (L.) and Chironomidae (Diptera) at a Scottish Loch. J. Paleolimnol. 47: 631–644.
  • Bryant, D.M. 1975. Breeding biology of House Martins Delichon urbica in relation to aerial insect abundance. Ibis 117: 180–216.
  • Buchanan, G.M., Grant, M.C., Sanderson, R.A. & Pearce-Higgins, J.W. 2006. The contribution of invertebrate taxa to moorland bird diets and the potential implications of land-use management. Ibis 148: 615–628.
  • Burgess, M.D., Smith, K.W., Evans, K.L., Leech, D., Pearce-Higgins, J.W., Branston, C.J., Briggs, K., Clark, J.R., du Feu, C.R., Lewthwaite, K., Nager, R.G., Sheldon, B.C., Smith, J.A., Whytock, R.C., Willis, S.G. & Phillimore, A.B. 2018. Tritrophic phenological match-mismatch in space and time. Nat. Ecol. Evol. 2: 290–975.
  • Burns, F., Eaton, M.A., Barlow, K.E., Beckmann, B.C., Brereton, T., Brooks, D.R., Brown, P.J.M., Fulaij, N.A., Gent, T., Henderson, I., Noble, D.G., Parsons, M., Powney, G.P., Roy, H.E., Stroh, P., Walker, K., Wilkinson, J.W., Wotton, S.R. & Gregory, R.D. 2016. Agricultural management and climatic change are the major drivers of biodiversity change in the UK. PLoS ONE 11: e0151595.
  • Carroll, M., Heinemeyer, A., Pearce-Higgins, Dennis, P., West, C., Holden, J., Wallage, Z.E. & Thomas, C.D. 2015. Hydrologically driven ecosystem processes determine the distribution and persistence of ecosystem-specialist predators under climate change. Nat. Commun. 6: 7851.
  • Carroll, M.J., Dennis, P., Pearce-Higgins, J.W. & Thomas, C.D. 2011. Maintaining northern peatland ecosystems in a changing climate: effects of soil moisture, drainage and drain blocking on craneflies. Global Change Biol. 17: 2991–3001.
  • Chamberlain, D., Fuller, R., Bunce, R., Duckworth, J. & Shrubb, M. 2000. Changes in the abundance of farmland birds in relation to the timing of agricultural intensification in England and Wales. J. Appl. Ecol. 37: 771–788.
  • Chan, K.Y. 2001. An overview of some tillage impacts on earthworm population abundance and diversity—implications for functioning in soils. Soil Tillage Res. 57: 179–191.
  • Clarke, A., Prince, P.A. & Clarke, R. 1996. The energy content of dragonflies (Odonata) in relation to predation by falcons. Bird Study 43: 300–304.
  • Conrad, K.F., Warren, M.S., Fox, R., Parsons, M.S. & Woiwod, I.P. 2006. Rapid declines of common, widespread British moths provide evidence of an insect biodiversity crisis. Biol. Conserv. 132: 279–291.
  • Conrad, K.F., Woiwood, I.P. & Perry, J.N. 2002. Long-term decline in abundance and distribution of the garden tiger moth (Arctia caja) in Great Britain. Biol. Conserv. 106: 329–337.
  • Cooke, S.C., Balmford, A., Donald, P.F., Newson, S.E. & Johnston, A. 2020. Roads as a contributor to landscape-scale variation in bird communities. Nat. Commun. 11: 3125.
  • Coulson, J.C. 1962. The biology of Tipula subnodicornis Zetterstedt, with comparative observations on Tipula paludosa Meigen. J. Anim. Ecol. 31: 1–21.
  • Čiamporová-Zaťovičová, Z., Hamerlík, L., Šporka, F. & Bitušík, P. 2010. Littoral benthic macroinvertebrates of alpine lakes (Tatra Mts) along an altitudinal gradient: a basis for climate change assessment. Hydrobiologia 648: 19–34.
  • Defra. 2020. Wild bird populations in the UK, 1970 to 2019. 52pp. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/938262/UK_Wild_birds_1970-2019_final.pdf. Accessed on 15 November 2021.
  • Denerley, C., Redpath, S.M., Van der Wal, R., Newson, S.E., Chapman, J.W. & Wilson, J.D. 2019. Breeding ground correlates of the distribution and decline of the Common Cuckoo Cuculus canorus at two spatial scales. Ibis 161: 346–358.
  • Devictor, V., Van Swaay, C., Brereton, T., Brotons, L., Chamberlain, D., Heliölä, J., Herrando, S., Julliard, R., Kuussaari, M., Lindström, Å & Reif, J. 2012. Differences in the climatic debts of birds and butterflies at a continental scale. Nat. Clim. Change 2: 121–124.
  • Durance, I. & Ormerod, S.J. 2007. Climate change effects on upland stream macroinvertebrates over a 25-year period. Global Change Biol. 13: 942–957.
  • Eggermont, H. & Heiri, O. 2012. The chironomid-temperature relationship: expression in nature and palaeoenvironmental implications. Bio Rev. 87: 430–456.
  • Eglington, S.M., Julliard, R., Gargallo, G., van der Jeugd, H.P., Pearce-Higgins, J.W., Baillie, S.R. & Robinson, R.A. 2015. Latitudinal gradients in the productivity of European migrant warblers have not shifted northwards during a period of climate change. Global Ecol. Biogeogr. 24: 427–436.
  • Eglington, S, M. & Pearce-Higgins, J. W. 2012. Disentangling the relative importance of changes in climate and land-use intensity in driving recent bird population trends. PLoS ONE 7: e30407.
  • Engels, S., Medeiros, A.S., Axford, Y., Brooks, S.J., Heiri, O., Luoto, T.P., Nazarova, L., Porinchu, D.F., Quinlan, R. & Self, A.E. 2020. Temperature change as a driver of spatial patterns and long-term trends in chironomid (Insecta: Dipera) diversity. Global Change Biol. 26: 1155–1169.
  • Epanchin, P.N., Knapp, R.A. & Lawler, S.P. 2010. Non-native trout impact an alpine-nesting bird by altering aquatic-insect subsidies. Ecology 91: 2406–2415.
  • Ewald, J.A., Wheatley, C.J., Aebischer, N.J., Moreby, S.J., Duffield, S.J., Crick, H.Q.P. & Morecroft, M.B. 2015. Influences of extreme weather, climate and pesticide use on invertebrates in cereal fields over 42 years. Global Change Biol. 21: 3931–3950.
  • Finch, T., Bell, J.R., Robinson, R.A. & Peach, W.J. 2022. Demography of Common Swifts (Apus apus) breeding in the UK associated with local weather but not aphid biomass. Ibis. https://doi.org/10.1111/ibi.13156
  • Forister, M.L., Pelton, E.M. & Black, S.H. 2019. Declines in insect abundance and diversity: we know enough to act now. Conserv. Sci. Prac. 1: e80. https://doi.org/10.1111/csp2.80
  • Fox, R., Dennis, E.B., Harrower, C.A., Blumgart, D., Bell, J.R., Cook, P., Davis, A.M., Evans-Hill, L.J., Haynes, F., Hill, D., Isaac, N.J.B., Parsons, M.S., Pocock, M.J.O., Prescott, T., Randle, Z., Shortall, C.R., Tordoff, G.M., Tuson, D. & Bourn, N.A.D. 2021. The State of Britain’s Larger Moths. Butterfly Conservation, Rothamsted Research and UK Centre for Ecology & Hydrology Butterfly Conservation.
  • Fox, R., Oliver, T.H., Harrower, C., Parsons, M.S., Thomas, C.D. & Roy, D.B. 2014. Long-term changes to the frequency of occurrence of British moths are consistent with opposing and synergistic effects of climate and land-use changes. J. Appl. Ecol. 51: 949–957.
  • Franks, S.E., Douglas, D.J.T., Gillings, S. & Pearce-Higgins, J.W. 2017. Environmental correlates of breeding abundance and population change of Eurasian Curlew Numenius arquata in Britain. Bird Study 64: 393–409.
  • Franks, S.E., Pearce-Higgins, J.W., Atkinson, S., Bell, J.R., Botham, M.S., Brereton, T.M., Harrington, R. & Leech, D.I. 2018. The sensitivity of breeding songbirds to changes in seasonal timing is linked to population change but cannot be directly attributed to the effects of trophic asynchrony on productivity. Global Change Biol. 24: 957–971.
  • Füreder, L., Ettinger, R., Boggero, A., Thaler, B. & Thies, H. 2006. Macroinvertebrate diversity in Alpine lakes: effects of altitude and catchment properties. Hydrobiologia 562: 123–144.
  • Gardarsson, A. & Einarsson, A. 2008. Relationships among food, reproductive success and density of harlequin ducks on the River Laxá at Myvatn, Iceland (1975-2002). Waterbirds 31: 84–91.
  • Gillings, S. 2019. Bird responses to housing development in intensively managed agricultural landscapes. Urban. Ecosyst. 22: 1007–1017.
  • Gillings, S., Balmer, D.E. & Fuller, R.J. 2015. Directionality of recent bird distribution shifts and climate change in Britain. Global Change Biol. 21: 2155–2168.
  • Grabener, S., Oldeland, J., Shortall, C.R. & Harrington, R. 2020. Changes in phenology and abundance of suction-trapped diptera from a farmland site in the UK over four decades. Ecol. Entomol. 45: 1215–1219.
  • Gunstone, T., Cornelisse, T., Klein, K., Dubey, A. & Donley, N. 2021. Pesticides and soil invertebrates: a hazard assessment. Front. Environ. Sci. 9: 122.
  • Hallmann, C.A., Sorg, M., Jongejans, E., Siepel, H., Hofland, N., Schwan, H., Stenmans, W., Müller, A., Sumser, H., Hörren, T., Goulson, D. & de Kroon, H. 2017. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12: e0185809.
  • Hallmann, C.A., Ssymank, A., Sorg, M., de Kroon, H. & Jongejans, E. 2021. Insect biomass decline scaled to species diversity: general patterns derived from a hoverfly community. Proc. Natl Acad. Sci. USA 118: e2002554117.
  • Halsch, C.A., Shapiro, A.M., Fordyce, J.A. & Forister, M.L. 2021. Insects and recent climate change. Proc. Natl Acad. Sci. USA 118: e2002543117.
  • Hancock, M.H., Robson, H.J., Smith, T.D. & Douse, A. 2016. Correlates of lake use by breeding common scoters in Scotland. Aquat. Conserv. Marine Freshwater Ecosyst. 26: 749–767.
  • Harris, S.J., Massimino, D., Balmer, D.E., Eaton, M.A., Noble, D.G., Pearce-Higgins, J.W., Woodcock, P. & Gillings, S. 2020. The Breeding Bird Survey 2019. BTO Research Report 726. British Trust for Ornithology, Thetford.
  • Harrison, P.J., Buckland, S.T., Yuan, Y., Elston, D.A., Brewer, M.J., Johnston, A. & Pearce-Higgins, J.W. 2014. Assessing trends in biodiversity over space and time using the example of British breeding birds. J. Appl. Ecol. 51: 1650–1660.
  • Hayhow, D.B., Eaton, M.A., Stanbury, A.J., Burns, F., Kirby, W.B., Bailey, N., Beckmann, B., Bedford, J., Boersch-Supan, P.H., Coomber, F., Dennis, E.B., Dolman, S.J., Dunn, E., Hall, J., Harrower, C., Hatfield, J.H., Hawley, J., Haysom, K., Hughes, J., Johns, D.G., Mathews, F., McQuatters-Gollop, A., Noble, D.G., Outhwaite, C.L., Pearce-Higgins, J.W., Pescott, O.L., Powney, G.D. & Symes, N. 2019. The State of Nature 2019. The State of Nature Partnership. https://nbn.org.uk/wp-content/uploads/2019/09/State-of-Nature-2019-UK-summary.pdf . Accessed on 7 May 2021.
  • Heward, C.J., Hoodless, A.N., Conway, G.J., Aebischer, N.J., Gillings, S. & Fuller, R.J. 2015. Current status and recent trend of the Eurasian Woodcock Scolopax rusticola as a breeding bird in Britain. Bird Study 62: 535–551.
  • Hogg, I.D. & Williams, D.D. 1996. Response of stream invertebrates to a global-warming thermal regime: an ecosystem-level manipulation. Ecology 77: 395–407.
  • Holland, J.M., Smith, B.M., Birkett, T.C. & Southway, S. 2012. Farmland bird invertebrate food provision in arable crops. Ann. Appl. Biol. 160: 66–75.
  • Imlay, T.L., Mann, H.A.R. & Leonard, M.L. 2017. No effect of insect abundance on nestling survival or mass for three aerial insectivores. Avian Conserv. Ecol. 12: 19.
  • Janzen, D.H. & Hallwachs, W. 2019. Perspective: where might be many tropical insects? Biol. Conserv. 233: 102–108.
  • Janzen, D.H. & Hallwachs, W. 2021. To us insectometers, it is clear that insect decline in our Costa Rican tropics is real, so let’s be kind to the survivors. Proc. Natl Acad. Sci. USA 118: e2002546117.
  • Kendon, M., McCarthy, M., Jevrejeva, S., Matthews, A., Sparks, T. & Garforth, J. 2020. State of the UK climate 2019. Int. J. Climatol. 40 (S1): 1–69.
  • Kenna, D., Pawar, S. & Gill, R.J. 2021. Thermal flight performance reveals impact of warming on bumblebee foraging potential. Funct. Ecol. 35: 2508–2522.
  • Krištín, A. & Patočka, J. 1997. Birds as predators of Lepidoptera: selected examples. Biologia 52: 319–326.
  • Lawson, B., Robinson, R.A., Toms, M.P., Risely, K., MacDonald, S. & Cunningham, A.A. 2018. Health hazards to wild birds and risk factors associated with anthropogenic food provisioning. Philos. Trans. R Soc. B 373: 20170091.
  • Lewis-Phillips, J., Brooks, S.J., Sayer, C.D., Patmore, I.R., Hilton, G.M., Harrison, A., Robson, H. & Axmacher, J.C. 2020. Ponds as insect chimneys: restoring overgrown farmland ponds benefits birds through elevated productivity of emerging aquatic insects. Biol. Conserv. 241: 108253.
  • Lister, B.C. & Garcia, A. 2018. Climate-driven declines in arthropod abundance restructure a rainforest food web. Proc. Natl Acad. Sci. USA 115: E10397–E10406.
  • Macgregor, C.J., Williams, J.H., Bell, J.R. & Thomas, C.D. 2019. Moth biomass has fluctuated over 50 years in Britain but lacks a clear trend. Nat. Ecol. Evol. 3: 1645–1649.
  • Maercks, H. 1939. Untersuchungen zur Biologie und Bekämpfung schädlicher Tipuliden Arb. Physiol. Angew. Entomol. 6: 222–257.
  • Maercks, H. 1941. Über Biologie und Schädlichkeit der Herbstschnake (Tipula czizeki de Jong). Arbeiten über physiologische und angewandte Entomologie aus Berlin-Dahlem 8: 197–205.
  • Mallord, J.W., Orsman, C.J., Cristinacce, A., Stowe, T.J., Charman, E.C. & Gregory, R.D. 2017. Diet flexibility in a declining long-distance migrant may allow it to escape the consequences of phenological mismatch with its caterpillar food supply. Ibis 159: 76–90.
  • Mancinia, F., Woodcock, B.A., Redhead, J., Spurgeon, D.J., Jarvis, S.G., Pywell, R.F., Shore, R.F., Johnson, A.C. & Isaac, N.J.B. 2020. Detecting landscape scale consequences of insecticide use on invertebrate communities. Adv. Ecol. Res. 63: 93–126.
  • Martay, B., Brewer, M.J., Elston, D.A., Bell, J.R., Harrington, R., Brereton, T.M., Barlow, K.E., Botham, M.S. & Pearce-Higgins, J.W. 2017. Impacts of climate change on national biodiversity population trends. Ecography 40: 1139–1151.
  • Martay, B. & Pearce-Higgins, J.W. 2018. Using data from schools to model variation in soil invertebrates across the UK: The importance of weather, climate, season and habitat. Pedobiologia 67: 1–9.
  • Martay, B. & Pearce-Higgins, J.W. 2020. Opening a can of worms: Can the availability of soil invertebrates be indicated by birds? Ecol. Indic. 113: 106222.
  • Martay, B., Pearce-Higgins, J.W., Harris, S.J. & Gillings, S. 2023. Breeding ground temperature rises, more than habitat change, are associated with spatially variable population trends in two species of migratory bird. Ibis. 165: 34–54.
  • Mason, S.C., Palmer, G., Fox, R., Gillings, S., Hill, J.K., Thomas, C.D. & Oliver, T.H. 2015. Geographical range margins of many taxonomic groups continue to shift polewards. Biol. J. Linn. Soc. 115: 586–597.
  • Massimino, D., Johnston, A., Noble, D.G. & Pearce-Higgins, J.W. 2015. Multi-species spatially-explicit indicators reveal spatially structured trends in bird communities. Ecol. Indic. 58: 277–285.
  • McCracken, D.I., Foster, G.N. & Kelly, A. 1995. Factors affecting the size of leatherjacket (Diptera: Tipulidae) populations in pastures in the west of Scotland. Appl. Soil Ecol. 2: 203–213.
  • McDermott Long, O., Warren, R., Price, J., Brereton, T.M., Botham, M.S. & Franco, A.M.A. 2017. Sensitivity of UK butterflies to local climatic extremes: which life stages are most at risk. J. Anim. Ecol. 86: 108–116.
  • Miller, M.W., Leech, D.I., Pearce-Higgins, J.W. & Robinson, R.A. 2017. Multi-state multi-stage modelling of nest-success suggest interaction between weather and land-use. Ecology 98: 175–186.
  • Milne, A., Laughlin, R. & Coggins, R.E. 1965. The 1955 and 1959 population crashes of the leather-jacket, Tipula paludosa Meigen in Northumberland. J. Anim. Ecol. 34: 529–544.
  • Montgomery, G.A., Dunn, R., Fox, R., Jongejans, E., Leather, S.R., Saunders, M., Shortall, C., Tingley, M. & Wagner, D.L. 2020. Is the insect apocalypse upon us? How to find out. Biol. Conserv. 241: 108327.
  • Morris, R. & Ball, S. 2021. Death by one hundred droughts: is climate change already driving biodiversity declines in Britain? British Wildlife 33: 13–20.
  • Morris, R.K.A. & Ball, S.G. 2003. The changing distribution of Volucella inanis (L, 1758) (Diptera: Syrphidae). Br. J. Ent. Nat. Hist. 16: 221-228.
  • Morris, R.K.A. & Ball, S.G. 2004. Sixty years of Volucella zonaria (Poda, 1761) (Diptera: Syrphidae) in Britain. Br. J. Ent. Nat. Hist. 17: 217–227.
  • Morris, R.K.A. & Ball, S.G. 2019. Effects of the 2018 heatwave on British hoverflies (Diptera, Syrphidae). Dipterists Digest (Second Series) 26: 139–150.
  • Morrison, C.A., Butler, S.J., Clark, J.A. & Gill, J.A. 2016. Demographic drivers of decline and recovery in an Afro-Palaearctic migratory bird population. Proc. R Soc. Ser. B 283: 20161387.
  • Møller, A.P. 2019. Parallel declines in abundance of insects and insectivorous birds in Denmark over 22 years. Ecol. Evol. 9: 6581–6587.
  • Møller, A.P., Czeszczewik, D., Flensted-Jensen, E., Erritzøe, J., Krams, I., Laursen, K., Liang, W. & Walankiewicz, W. 2021. Abundance of insects and aerial insectivorous birds in relation to pesticide and fertilizer use. Avian Res. 12: 43.
  • Murakami, M. & Nakano, S. 2002. Indirect effect of aquatic insect emergence on a terrestrial insect population through by birds predation. Ecol. Lett. 5: 333–337.
  • Ockendon, N., Baker, D.J., Carr, J.A., Almond, R.E.A., Amano, T., Bertram, E., Bradbury, R.B., Bradley, C., Butchart, S.H.M., Doswald, N., Foden, W., Gill, D.J.C., Green, R.E., Sutherland, W.J., Tanner, E.V.J. & Pearce-Higgins, J.W. 2014. Mechanisms underpinning climatic impacts on natural populations: altered species interactions are more important than direct effects. Global Change Biol. 20: 2221–2229.
  • Ockendon, N., Leech, D. & Pearce-Higgins, J.W. 2013. Climate effects on breeding grounds are more important drivers of breeding phenology in migrant birds than carry-over effects from wintering grounds. Biol. Lett. 9: 20130669.
  • Oliver, T.H., Brereton, T. & Roy, D.B. 2013. Population resilience to an extreme drought is influenced by habitat area and fragmentation in the local landscape. Ecography 36: 579–586.
  • Oliver, T.H., Gillings, S., Pearce-Higgins, J.W., Brereton, T., Crick, H.Q.P., Duffield, S.J., Morecroft, M.D. & Roy, D.B. 2017. Large extents of intensive land use limit community reorganization during climate warming. Global Change Biol. 23: 2272–2283.
  • Oliver, T.H., Marshall, H.H., Morecroft, M.D., Brereton, T., Prudhomme, C. & Huntingford, C. 2015. Interacting effects of climate change and habitat fragmentation on drought-sensitive butterflies. Nat. Clim. Change 5: 941–945.
  • Outhwaite, C.L., Gregory, R.D., Chandler, R.E., Collen, B. & Isaac, N.J.B. 2020. Complex long-term biodiversity change among invertebrates, bryophytes and lichens. Nat. Ecol. Evol. 4: 384–392.
  • Palmer, G., Platts, P.J., Brereton, T., Chapman, J.W., Dytham, C., Fox, R., Pearce-Higgins, J.W., Roy, D.B. & Thomas, C.D. 2017. Climate change, climatic variation and extreme biological responses. Philos. Trans. R Soc. B 372: 20160144.
  • Peach, W.J., Mallord, J.W., Ockendon, N., Orsman, C.J. & Haines, W.G. 2015. Invertebrate prey availability limits reproductive success but not breeding population size in suburban House Sparrows Passer domesticus. Ibis 157: 601–613.
  • Peach, W.J., Robinson, R.A. & Murray, K.A. 2004. Demographic and environmental causes of the decline of rural Song Thrushes Turdus philomelos in lowland Britain. Ibis 146: 50–59.
  • Pearce-Higgins, J.W. 2010. Using diet to assess the sensitivity of northern and upland birds to climate change. Clim. Res. 45: 119–130.
  • Pearce-Higgins, J.W. 2017. Birds and climate change. Br. Birds 110: 388–404.
  • Pearce-Higgins, J.W. 2021. Climate Change and the UK’s Birds. British Trust for Ornithology Report, Thetford, Norfolk.
  • Pearce-Higgins, J.W., Beale, C.M., Oliver, T.H., August, T.A., Carroll, M., Massimino, D., Ockendon, N., Savage, J., Wheatley, C.J., Ausden, M.A., Bradbury, R.B., Duffield, S.J., Macgregor, N.A., McClean, C.J., Morecroft, M.D., Thomas, C.D., Watts, O., Beckmann, B.C., Fox, R., Royd, H.E., Sutton, P.G., Walker, K.J. & Crick, H.Q.P. 2017. A national-scale assessment of climate change impacts on species: assessing the balance of risks and opportunities for multiple taxa. Biol. Conserv. 213: 124–134.
  • Pearce-Higgins, J.W. & Crick, H.Q.P. 2019. One-third of English breeding bird species show evidence of population responses to climatic variables over 50 years. Bird Study 66: 159–172.
  • Pearce-Higgins, J.W. & Chandler, D. 2020. Do surveys of adult dragonflies and damselflies yield repeatable data? Variation in monthly counts of abundance and species richness. J. Insect Conserv. 24: 877–889.
  • Pearce-Higgins, J.W., Dennis, P., Whittingham, M.J. & Yalden, D.W. 2010. Impacts of climate on prey abundance account for fluctuations in a population of a northern wader at the southern edge of its range. Global Change Biol. 16: 12–23.
  • Pearce-Higgins, J.W. & Green, R.E. 2014. Birds and Climate Change: impacts and conservation responses. Cambridge University Press, Cambridge.
  • Pearce-Higgins, J.W. & Yalden, D.W. 2004. Habitat selection, diet, arthropod availability and growth of a moorland wader: the ecology of European Golden Plover Pluvialis apricaria chicks. Ibis 146: 335–346.
  • Perrins, C.M. 1991. Tits and their caterpillar food supply. Ibis 133: 49–54.
  • Powney, G.D., Carvell, C., Edwards, M., Morris, R.K.A., Roy, H.E., Woodcock, B.A. & Isaac, N.J.B. 2019. Widespread losses of pollinating insects in Britain. Nat. Commun. 10: 2041–1723.
  • Reed, T.E., Jenouvrier, S. & Visser, M.E. 2013. Phenological mismatch strongly affects individual fitness but not population demography in a woodland passerine. J. Anim. Ecol. 82: 131–144.
  • Reid, J.M., Bignal, E.M., Bignal, S., McCracken, D.I., Bogdanova, M.I. & Monaghan, P. 2008. Investigating patterns and processes of demographic variation: environmental correlates of pre-breeding survival in red-billed choughs Pyrrhocorax pyrrhocorax. J. Anim. Ecol. 77: 777–778.
  • Renner, S.S. & Zohner, C.M. 2018. Climate change and phenological mismatch in trophic interactions among plants, insects and vertebrates. Annu. Rev. Ecol. Evol. Syst. 49: 165–182.
  • Robinson, R.A., Balmer, D.E. & Marchant, J.H. 2008. Survival rates of hirundines in relation to British and African rainfall. Ring. Migr. 24: 1–6.
  • Román-Palacios, C. & Wiens, J.J. 2020. Recent responses to climate change reveal the drivers of species extinction and survival. Proc. Natl Acad. Sci. USA 117: 4211–4217.
  • Roos, S., Smart, J., Gibbons, D.W. & Wilson, J.D. 2018. A review of predation as a limiting factor for bird populations in mesopredator-rich landscapes: a case study of the UK. Biol Rev 93: 1915–1937.
  • Roy, H.E., Baxter, E., Saunders, A. & Pocock, M.J.O. 2016. Focal plant observations as a standardised method for pollinator monitoring: opportunities and limitations for mass participation citizen science. PLoS ONE 11: e0150794.
  • Samplonius, J.M., Atkinson, A., Hassall, C., Keogan, K., Thackeray, S.J., Assmann, J.J., Burgess, M.D., Johansson, J., Macphie, K.H., Pearce-Higgins, J.W. & Simmonds, E.G. 2021. Strengthening the evidence base for temperature mediated phenological asynchrony and its impacts. Nat Ecol Evol 5: 155–164.
  • Saunders, M.E. 2019. No simple answers for insect conservation. Am. Sci. 107: 148–151.
  • Scullion, J. & Ramshaw, G.A. 1987. Effects of various manurial treatments on earthworm activity in grassland. Biol. Agric. Horticult. 4: 271–281.
  • Senior, V.L., Evans, L.C., Leather, S.R., Oliver, T.H. & Evans, K.L. 2020. Phenological responses in a sycamore– aphid–parasitoid system and consequences for aphid population dynamics: a 20 year case study. Global Change Biol. 26: 2814–2828.
  • Shortall, C.R., Moore, A., Smith, E., Hall, M.J., Woiwod, I.P. & Harrington, R. 2009. Long-term changes in the abundance of flying insects. Insect Conserv. Diver. 2: 251–260.
  • Simmons, B.I., Balmford, A., Bladon, A.J., Christie, A.P., De Palma, A., Dicks, L.V., Gallego-Zamorano, J., Johnston, A., Martin, P.A., Purvis, A., Rocha, R., Wauchope, H.S., Wordley, C.F.R., Wirthington, T.A. & Finch, T. 2019. Worldwide insect declines: an important message, but interpret with caution. Ecol. Evol. 9: 3678–3680.
  • Smith, K.W. & Smith, L. 2019. Does the abundance and timing of defoliating caterpillars influence the nest survival and productivity of the Great Spotted Woodpecker Dendrocopos major? Bird Study 66: 187–197.
  • Smith, K.W. & Smith, L. 2020. Long-term trends in the nest survival and productivity of the Lesser Spotted Woodpecker Dryobates minor in Britain. Bird Study 67: 109–118.
  • Spiller, K.J. & Dettmers, R. 2019. Evidence for multiple drivers of aerial insectivore declines in North America. Condor 121: duz010.
  • Stroud, J.L. 2019. Soil health pilot study in England: outcomes from an on-farm earthworm survey. PLoS ONE 14: e0203909.
  • Sullivan, M.J.P., Newson, S.E. & Pearce-Higgins, J.W. 2015. Using habitat-specific population trends to evaluate the consistency of the effects of species traits on bird population change. Biol. Conserv. 192: 343–352.
  • Sutton, P.G., Beckmann, B.C. & Nelson, N. 2017. The current status of orthopteroid insects in Britain and Ireland Orthoptera recording scheme of Britain and Ireland. Atropos 59: 6–35.
  • Taylor, P., Smallshire, D., Parr, A., Brooks, S., Cham, S., Colver, E., Harvey, M., Hepper, D., Isaac, N., Logie, M., McFerran, D., McKenna, F., Nelson, B. & Roy, D. 2021. State of Dragonflies in Britain and Ireland 2021. British Dragonfly Society. 84pp. https://british-dragonflies.org.uk/wp-content/uploads/2021/09/State-of-Dragonflies-2021-final-website.pdf.
  • Teglhøj, P.G. 2017. A comparative study of insect abundance and reproductive success of barn swallows Hirundo rustica in two urban habitats. J. Avian Biol. 48: 846–853.
  • Tikkanen, O.P. & Julkunen-Tiitto, R. 2003. Phenological variation as protection against defoliating insects: The case of Quercus robur and Operophtera brumata. Oecologia 136: 244–251.
  • Tixier, G., Wilson, K.P. & Williams, D.D. 2009. Exploration of the influence of global warming on the chironomid community in a manipulated shallow groundwater system. Hydrobiologia 624: 13–27.
  • Twining, C.W., Shipley, J.R. & Winkler, D.W. 2018. Aquatic insects rich in omega-3 fatty acids drive breeding success in a widespread bird. Ecol. Lett. 21: 1812–1820.
  • Vaughan, I.P. & Ormerod, S.J. 2014. Linking interdecadal changes in British river ecosystems to water quality and climate dynamics. Global Change Biol. 20: 2725–2740.
  • Visser, M.E., Holleman, L.J.M. & Gienapp, P. 2006. Shifts in caterpillar biomass phenology due to climate change and its impact on the breeding biology of an insectivorous bird. Oecologia 147: 164–172.
  • Wiens, J.J. 2016. Climate-related local extinctions are already widespread among plant and animal species. PLoS Biol. 14: e2001104.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.