218
Views
4
CrossRef citations to date
0
Altmetric
Genetics

Small RNA sequencing reveals miRNAs important for hypoxic adaptation in the Tibetan chicken

ORCID Icon, ORCID Icon, , ORCID Icon, , , , , , ORCID Icon, , ORCID Icon, , & ORCID Icon show all
Pages 632-639 | Received 09 Mar 2020, Accepted 03 Jun 2020, Published online: 24 Jul 2020

References

  • Bannister, S. C., M. L. Tizard, T. J. Doran, A. H. Sinclair, and C. A. Smith. 2009. “Sexually Dimorphic microRNA Expression during Chicken Embryonic Gonadal Development.” Biology of Reproduction 81 (1): 165–176.
  • Bartel, D. P. 2009. “MicroRNAs: Target Recognition and Regulatory Functions.” Cell 136 (2): 215–233.
  • Bastidas-Coral, A. P., J. M. A. Hogervorst, T. Forouzanfar, C. J. Kleverlaan, P. Koolwijk, J. Klein-Nulend, and A. D. Bakker. 2019. “IL-6 Counteracts the Inhibitory Effect of IL-4 on Osteogenic Differentiation of Human Adipose Stem Cells.” Journal of Cellular Physiology 234 (11): 20520–20532.
  • Chen, M., S. Wang, X. Li, K. B. Storey, and X. Zhang. 2018a. “The Potential Contribution of miRNA-200-3p to the Fatty Acid Metabolism by Regulating AjEHHADH during Aestivation in Sea Cucumber.” PeerJ 6: e5703. doi:10.7717/peerj.5703.
  • Chen, X., Y. Qu, Y. Cheng, J. Wang, X. Lei, G. Song, H. Zhang, H. Wang, and F. Lei. 2018b. “MiR-19b-3p Regulates MAPK1 Expression in Embryonic Fibroblasts from the Great Tit (Parus Major) under Hypoxic Conditions.” Cellular Physiology and Biochemistry 46 (2): 546–560.
  • Choi, M., J. Kim, and J. Moon. 2019. “Dynamic Power Allocation and User Scheduling for Power-Efficient and Delay-Constrained Multiple Access Networks.” IEEE Transactions on Wireless Communications 1. doi:10.1109/twc.2019.2929809.
  • Hendrickson, S. L. 2013. “A Genome Wide Study of Genetic Adaptation to High Altitude in Feral Andean Horses of the páramo.” BMC Evolutionary Biology 13 (1): 273.
  • Houten, S. M., S. Denis, C. A. Argmann, Y. Jia, S. Ferdinandusse, J. K. Reddy, and R. J. A. Wanders. 2012. “Peroxisomal L-bifunctional Enzyme (Ehhadh) Is Essential for the Production of Medium-chain Dicarboxylic Acids.” Journal of Lipid Research 53 (7): 1296–1303.
  • Huang, S., X. Tong, M. U. Rehman, M. Wang, L. Zhang, L. Wang, J. Li, and S. Yang. 2017. “Oxygen Supplementation Ameliorates Tibial Development via Stimulating Vascularization in Tibetan Chickens at High Altitudes.” International Journal of Biological Sciences 13 (12): 1547–1559.
  • Huang, W., L. Guo, M. Zhao, D. Zhang, H. Xu, and Q. Nie. 2019. “The Inhibition on MDFIC and PI3K/AKT Pathway Caused by miR-146b-3p Triggers Suppression of Myoblast Proliferation and Differentiation and Promotion of Apoptosis.” Cells 8 (7): 656.
  • Inui, M., G. Martello, and S. Piccolo. 2010. “MicroRNA Control of Signal Transduction.” Nature Reviews Molecular Cell Biology 11 (4): 252–263.
  • Jiang, S. Y., H. Y. Xu, Z. N. Shen, C. J. Zhao, and C. Wu. 2018. “Genome-wide Association Analysis Reveals Novel Loci for Hypoxia Adaptability in Tibetan Chicken.” Animal Genetics 49 (4): 337–339.
  • Kong, Z., C. Zhou, L. Chen, A. Ren, D. Zhang, Z. Basang, Z. Tan, J. Kang, and B. Li 2019. “Multi-Omics Analysis Reveals Up-Regulation of APR Signaling, LXR/RXR and FXR/RXR Activation Pathways in Holstein Dairy Cows Exposed to High-Altitude Hypoxia.” Animals (Basel) 9 (7). doi:10.3390/ani9070406.
  • Lee, L., and K. Kang. 2019. “Hypoxia Promotes Vascular Smooth Muscle Cell Proliferation through microRNA-Mediated Suppression of Cyclin-Dependent Kinase Inhibitors.” Cells 8 (8): 802.
  • Lee, S. Y., J. Yang, J. H. Park, H. K. Shin, W. J. Kim, S. Y. Kim, E. J. Lee, et al.. 2020. “The MicroRNA-92a/Sp1/MyoD Axis Regulates Hypoxic Stimulation of Myogenic Lineage Differentiation in Mouse Embryonic Stem Cells.” Molecular Therapy 28 (1): 142–156.
  • Li, T., R. Wu, Y. Zhang, and D. Zhu. 2011. “A Systematic Analysis of the Skeletal Muscle miRNA Transcriptome of Chicken Varieties with Divergent Skeletal Muscle Growth Identifies Novel miRNAs and Differentially Expressed miRNAs.” BMC Genomics 12: 186. doi:10.1186/1471-2164-12-186.
  • Oni, L., D. B. Hawcutt, M. A. Turner, M. W. Beresford, S. McWilliam, C. Barton, B. K. Park, et al.. 2017. “Optimising the Use of Medicines to Reduce Acute Kidney Injury in Children and Babies.” Pharmacology & Therapeutics 174: 55–62.
  • Peng, Q., W. Wu, K. Y. Wu, B. Cao, C. Qiang, K. Li, S. H. Sacks, and W. Zhou. 2019. “The C5a/C5aR1 Axis Promotes Progression of Renal Tubulointerstitial Fibrosis in a Mouse Model of Renal Ischemia/reperfusion Injury.” Kidney International 96 (1): 117–128.
  • Rankin, A. M., K. E. Galbreath, and K. C. Teeter. 2017. “Signatures of Adaptive Molecular Evolution in American Pikas (Ochotona Princeps).” Journal of Mammalogy 98 (4): 1156–1167.
  • Rubies, C., A. P. Dantas, M. Batlle, M. Torres, R. Farre, G. Sanguesa, J. M. Montserrat, L. Mont, I. Almendros, and E. Guasch. 2019. “Aortic Remodelling Induced by Obstructive Apneas Is Normalized with Mesenchymal Stem Cells Infusion.” Scientific Reports 9 (1): 11443.
  • Scholz, C. C., M. A. Cavadas, M. M. Tambuwala, E. Hams, J. Rodriguez, A. von Kriegsheim, P. Cotter, et al.. 2013. “Regulation of IL-1beta-induced NF-kappaB by Hydroxylases Links Key Hypoxic and Inflammatory Signaling Pathways.” Proceedings of the National Academy of Sciences of The United States of America 110 (46): 18490–18495.
  • Scott, G. R., T. S. Elogio, M. A. Lui, J. F. Storz, and Z. A. Cheviron. 2015. “Adaptive Modifications of Muscle Phenotype in High-Altitude Deer Mice are Associated with Evolved Changes in Gene Regulation.” Molecular Biology and Evolution 32 (8): 1962–1976.
  • Shin, E. K., and E. B. Jeung. 2014. “217 the Expression OF β-Oxidation Relating Genes Under Hypoxic Stress in Human Placental Choriocarcinoma Cell (Bewo).” Reproduction, Fertility, and Development 27 (1): 198–199. doi:10.1071/RDv27n1Ab217.
  • Song, J. H., J. Yang, F. Pan, and B. Jin. 2015. “Differential Expression of microRNAs May Regulate Pollen Development in Brassica Oleracea.” Genetics and Molecular Research 14 (4): 15024–15034.
  • Srivastava, S., S. Bhagi, B. Kumari, K. Chandra, S. Sarkar, and M. Z. Ashraf. 2012. “Association of Polymorphisms in Angiotensin and Aldosterone Synthase Genes of the Renin-angiotensin-aldosterone System with High-altitude Pulmonary Edema.” Journal of the Renin-Angiotensin-Aldosterone System 13 (1): 155–160.
  • Sumbayev, V. V., and S. A. Nicholas. 2010. “Hypoxia-inducible Factor 1 as One of the “Signaling Drivers” of Toll-like Receptor-dependent and Allergic Inflammation.” Archivum Immunologiae Et Therapiae Experimentalis 58 (4): 287–294.
  • Sun, G., L. Fang, M. Xiangfei, J. Sun, R. Jiang, Y. Tian, R. Han, et al.. 2019. “gga-miRNA-18b-3p Inhibits Intramuscular Adipocytes Differentiation in Chicken by Targeting the ACOT13 Gene.” Cells 8 (6): 556.
  • Theodoropoulou, S., D. A. Copland, J. Liu, and A. D. Dick. 2015. “Role of Interleukin 33/ST2 Axis in the Immune-mediated Pathogenesis of Age-related Macular Degeneration.” Lancet 385 (Suppl 1): S97.
  • Tian, X. P., C. Y. Wang, X. H. Jin, M. Li, F. W. Wang, W. J. Huang, J. P. Yun, R. H. Xu, Q. Q. Cai, and D. Xie. 2019. “Acidic Microenvironment Up-Regulates Exosomal miR-21 and miR-10b in Early-Stage Hepatocellular Carcinoma to Promote Cancer Cell Proliferation and Metastasis.” Theranostics 9 (7): 1965–1979.
  • Villa, M., S. Crotta, K. S. Dingwell, E. M. Hirst, M. Gialitakis, H. Ahlfors, J. C. Smith, B. Stockinger, and A. Wack. 2016. “The Aryl Hydrocarbon Receptor Controls Cyclin O to Promote Epithelial Multiciliogenesis.” Nature Communications 7: 12652. doi:10.1038/ncomms12652.
  • Wang, X., Y. Zhang, H. Wang, G. Zhao, and X. Fa. 2017. “MicroRNA-145 Aggravates Hypoxia-Induced Injury by Targeting Rac1 in H9c2 Cells.” Cellular Physiology and Biochemistry 43 (5): 1974–1986.
  • Wang, Y., S. Song, T. Lu, Y. Cheng, Y. Song, S. Wang, F. Tan, J. Li, and N. Li. 2019. “Oxygen-supplementing Mesoporous Polydopamine Nanosponges with WS2 QDs-embedded for CT/MSOT/MR Imaging and Thermoradiotherapy of Hypoxic Cancer.” Biomaterials 220: 119405. doi:10.1016/j.biomaterials.2019.119405.
  • Wu, X., L. Liu, J. Li, and F. Chi. 2019. “Proteome Analysis Using iTRAQ Reveals the Differentiation between Tibetan and Ordinary Ovalbumin Peptides.” International Journal of Biological Macromolecules 132: 722–728. doi:10.1016/j.ijbiomac.2019.03.075.
  • Yin, K., Y. Cui, T. Sun, X. Qi, Y. Zhang, and H. Lin. 2020. “Antagonistic Effect of Selenium on Lead-induced Neutrophil Apoptosis in Chickens via miR-16-5p Targeting of PiK3R1 and IGF1R.” Chemosphere 246: 125794. doi:10.1016/j.chemosphere.2019.125794.
  • Zhang, Q., W. Gou, X. Wang, Y. Zhang, J. Ma, and H. Zhang. 2016. “Genome Resequencing Identifies Unique Adaptations of Tibetan Chickens to Hypoxia and High-Dose Ultraviolet Radiation in High-Altitude Environments.” Genome Biology and Evolution 8 (3): 765–776.
  • Zhang, W., Z. Fan, E. Han, R. Hou, L. Zhang, M. Galaverni, J. Huang, et al.. 2014. “Hypoxia Adaptations in the Grey Wolf (Canis Lupus Chanco) from Qinghai-Tibet Plateau.” PLoS Genetics 10 (7): e1004466.
  • Zhang, Y., W. Gou, C. Wu, and C. Wu. 2019. “Insights into Hypoxic Adaptation in Tibetan Chicken Embryos from Comparative Proteomics.” Comparative Biochemistry and Physiology Part D: Genomics and Proteomics 31: 100602. doi:10.1016/j.cbd.2019.100602.
  • Zhang, Y., H. Zhang, B. Zhang, and Y. Ling. 2020. “Identification of Key HIF-1alpha Target Genes that Regulate Adaptation to Hypoxic Conditions in Tibetan Chicken Embryos.” Gene 729: 144321. doi:10.1016/j.gene.2019.144321.
  • Zhong, C., S. Li, J. Li, F. Li, M. Ran, L. Qiu, D. Li, et al.. 2018. “Polymorphisms in the Egl Nine Homolog 3 (EGLN3) and Peroxisome Proliferator Activated Receptor-alpha (Pparalpha) Genes and Their Correlation with Hypoxia Adaptation in Tibetan Chickens.” PLoS One 13 (3): e0194156.
  • Zhou, T., G. Xu, L. Sun, Z. Yu, and G. Wang. 2019. “Improving Energy Metabolism of Deproteinized Extract of Calf Blood through Regulation of Hmgcs2, Cpt1a, Angptl4, Cyp8b1, and Ehhadh Genes in Mice.” Chemical Research in Chinese Universities 35 (3): 427–433.
  • Zhu, X., H. Shen, X. Yin, M. Yang, H. Wei, Q. Chen, F. Feng, Y. Liu, W. Xu, and Y. Li. 2019. “Macrophages Derived Exosomes Deliver miR-223 to Epithelial Ovarian Cancer Cells to Elicit a Chemoresistant Phenotype.” Journal of Experimental & Clinical Cancer Research 38 (1): 81.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.