1,873
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Evaluation of a commercial loop-mediated isothermal amplification assay, 3MTM Molecular Detection Assay 2 – Campylobacter, for the detection of Campylobacter from poultry matrices

ORCID Icon, , , &
Pages 404-413 | Received 16 Jun 2020, Accepted 28 Dec 2020, Published online: 24 Mar 2021

References

  • Anonymous. 2017. EN ISO 10272–1:2017. “Microbiology of the Food Chain – Horizontal Method for Detection and Enumeration of Campylobacter spp. - Part 1: Detection Method” International Organization for Standardization. Geneva, Switzerland.
  • AOAC PTM. 2018. “AOAC Performance Tested Method Certificate No. 111803. 3M™ Molecular Detection Assay 2 – Campylobacter.” Accessed June 1 2020. http://members.aoac.org/aoac_prod_imis/AOAC_Docs/RI/19PTM/19C_111803_2MMDA2Camp.pdf.
  • Batz, M., S. Hoffmann, and J. G. Morris Jr. 2012. “Ranking the Disease Burden of 14 Pathogens in Food Sources in the United States Using Attribution Data from Outbreak Investigations and Expert Elicitation.” Journal of Food Protection 75: 1278–1291. doi:10.4315/0362-028X.JFP-11-418.
  • Berrang, M. E., R. J. Buhr, and J. A. Cason. 2000. “Campylobacter Recovery from External and Internal Organs of Commercial Broiler Carcass Prior to Scalding.” Poultry Science 79: 286-290. doi:10.1093/ps/79.2.286.
  • Bolton, D. J. 2015. “Campylobacter Virulence and Survival Factors.” Food Microbiology 28: 99–108. doi:10.1016/j.fm.2014.11.017.
  • Bolton, F. J., D. Coates, and D. N. Hutchinson. 1984. “The Ability of Campylobacter Supplements to Neutralize Photochemically Induced Toxicity and Hydrogen Peroxide.” Journal of Applied Bacteriology 56: 151–157. doi:10.1111/j.1365-2672.1984.tb04707.x.
  • Bourassa, D. V., J. L. Lapidus, A. E. Kennedy-Smith, and A. Morey. 2019. “Efficacy of Neutralizing Buffered Peptone Water for Recovery of Salmonella, Campylobacter, and Enterobacteriaceae from Broiler Carcasses at Various Points along a Commercial Immersion Chilling Process with Peroxyacetic Acid.” Poultry Science 98: 393–397. doi:10.3382/ps/pey361.
  • CDC 2017. “Campylobacter (Campylobacteriosis).” Accessed 1 June 2020. https://www.cdc.gov/campylobacter/.
  • Corry, J. E., and H. L. Attabay. 2001. “Poultry as a Source of Campylobacter and Related Organisms.” Journal of Applied Microbiology 90: 96S–114S. doi:10.1046/j.1365-2672.2001.01358.x.
  • Davis, L., and V. DiRita. 2008. “Growth and Laboratory Maintenance of Campylobacter jejuni.” Current Protocols in Microbiology 10: 8A.1.1‐8A.1.7. doi:10.1002/9780471729259.mc08a01s10.
  • Domesle, K. J., Q. Yang, T. S. Hammack, and B. Ge. 2018. “Validation of a Salmonella Loop-mediated Isothermal Amplification Assay in Animal Food.” International Journal of Food Microbiology 264: 63–76. doi:10.1016/j.ijfoodmicro.2017.10.020.
  • EFSA and ECDC. 2018. “The European Union Summary Report on Trends and Sources of Zoonoses, Zoonotic Agents and Food-borne Outbreaks in 2017.” EFSA Journal 16: 5500. doi:10.2903/j.efsa.2018.5500.
  • Eijkelkamp, J. M., H. J. M. Aarts, and H. J. van der Fels-klerx. 2009. “Suitability of Rapid Detection Methods for Salmonella in Poultry Slaughterhouses.” Food Analytical Methods 2: 1–13. doi:10.1007/s12161-008-9040-5.
  • Gandelman, O. A., V. L. Church, C. A. Moore, G. Kiddle, C. A. Carne, S. Parmar, H. Jalal, L. C. Tisi, and J. A. Murray. 2010. “Novel Bioluminescent Quantitative Detection of Nucleic Acid Amplification in Real-time.” Plos One 5, e14155. doi:10.1371/journal.pone.0014155.
  • Hill, G. N., C. L. Bratcher, L. Wang, M. Singh, W. N. Tapp, and S. R. McKee. 2017. “Optimizing Enrichment of Campylobacter on Poultry.” Journal of Applied Poultry Research 26: 307–315. doi:10.3382/japr/pfw075.
  • Hinton, A., Jr. 2012. “Aerobic Growth of Campylobacter in Media Supplemented with α-ketoglutaric, Lactic, and/or Fumaric Acids.” World’s Poultry Science Journal 68 (Suppl 1): 256–258.
  • Hinton, A., Jr. 2013. “Aerobic Growth of Campylobacter in Media Supplemented with C3 Monocarboxylates and C4-dicarboxylates.” Journal of Food Protection 76: 685–690. doi:10.4315/0362-028X.JFP-12-430.
  • Hinton, A., Jr. 2014. “Effect of Beef Extract Concentration on Growth of Campylobacter in Media Incubated Aerobically.” Journal of Food Protection 77 (Supplement A): 39.
  • Hoffmann, S., B. Maculloch, and M. Batz. 2015. Economic Burden of Major Foodborne Illnesses Acquired in the United States, EIB-140. Washington, DC: United States Department of Agriculture. https://www.ers.usda.gov/webdocs/publications/43984/52807_eib140.pdf.
  • Hu, L., L. M. Ma, S. Zheng, X. He, H. Wang, E. W. Brown, T. S. Hammack, and G. Zhang. 2017. “Evaluation of 3M Molecular Detection System and ANSR Pathogen Detection System for Rapid Detection of Salmonella from Egg Products.” Poultry Science 96: 1410–1418. doi:10.3382/ps/pew399.
  • Hu, L., X. Deng, E. W. Brown, T. S. Hammack, L. M. Ma, and G. Zhang. 2018. “Evaluation of Roka Atlas Salmonella Method for the Detection of Salmonella in Egg Products in Comparison with Culture Method, Real-time PCR and Isothermal Amplification Assays.” Food Control 94: 123–131. doi:10.1016/j.foodcont.2018.06.039.
  • Jasson, V., L. Jacxsens, P. Luning, A. Rajkovic, and M. Uyttendaele. 2010. “Alternative Microbial Methods: An Overview and Selection Criteria.” Food Microbiology 27: 710–730. doi:10.1016/j.fm.2010.04.008.
  • Kaneko, H., T. Kawana, E. Fukushima, and T. Suzutani. 2007. “Tolerance of Loop-mediated Isothermal Amplification to a Culture Medium and Biological Substances.” Journal of Biochemical Biophysical Methods 70: 499–501. doi:10.1016/j.jbbm.2006.08.008.
  • Law, J. W., N. S. Ab Mutalib, K. G. Chan, and L. H. Lee. 2015. “Rapid Methods for the Detection of Foodborne Bacterial Pathogens: Principles, Applications, Advantages and Limitations.” Frontiers in Microbiology 5: 770. doi:10.3389/fmicb.2014.00770.
  • Lim, H. S., Q. Zheng, M. Miks-Krajnik, M. Turner, and H. G. Yuk. 2015. “Evaluation of Commercial Kit Based on Loop-mediated Isothermal Amplification for Rapid Detection of Low Levels of Uninjured and Injured Salmonella on Duck Meat, Bean Sprouts, and Fishballs in Singapore.” Journal of Food Protection 78: 1203–1207. doi:10.4315/0362-028X.JFP-14-535.
  • Liu, Y., Y. Cao, T. Wang, Q. Dong, J. Li, and C. Niu. 2019. “Detection of 12 Common Food-borne Bacterial Pathogens by Taqman Real-time PCR Using a Single Set of Reaction Conditions.” Frontiers in Microbiology 10: 222. doi:10.3389/fmicb.2019.00222.
  • Mafu, A. A., M. Pitre, and S. Sirois. 2009. “Real-time PCR as a Tool for Detection of Pathogenic Bacteria on Contaminated Food Contact Surfaces by Using a Single Enrichment Medium.” Journal of Food Protection 72: 1310–1314. doi:10.4315/0362-028X-72.6.1310.
  • Mangal, M., S. Bansal, S. K. Sharma, and R. K. Gupta. 2016. “Molecular Detection of Foodborne Pathogens: A Rapid and Accurate Answer to Food Safety.” Critical Reviews in Food Science and Nutrition 56: 1568–1584. doi:10.1080/10408398.2013.782483.
  • Mason, M. G., P. J. Blackall, J. R. Botella, and J. M. Templeton. 2019. “An Easy-to-perform, Culture-free Campylobacter Point-of-management Assay for Processing Plant Applications.” Journal of Applied Microbiology 128: 620–629. doi:10.1111/jam.14509.
  • MLG 41.04. 2016. “Isolation and Identification of Campylobacter jejuni/coli/lari from Poultry Rinse, Sponge and Raw Product Samples.” Accessed 1 June 2020. https://www.fsis.usda.gov/wps/wcm/connect/0273bc3d-2363-45b3-befb-1190c25f3c8b/MLG-41.pdf?MOD=AJPERES.
  • MLG 41A.00. 2016. “FSIS Procedure for the Use of a Polymerase Chain Reaction (PCR) Assay for Screening Campylobacter jejuni/coli/lari in Poultry Rinse, Sponge and Raw Product Samples.” Accessed 1 June 2020. https://www.fsis.usda.gov/wps/wcm/connect/ef62eaa8-4d65-4df9-a983-3908fc342b12/MLG-41A.pdf?MOD=AJPERES.
  • Mori, Y., H. Kanda, and T. Notomi. 2013. “Loop-mediated Isothermal Amplification (LAMP): Recent Progress in Research and Development.” Journal of Infection and Chemotherapy 19: 404–411. doi:10.1007/s10156-013-0590-0.
  • Mori, Y., and T. Notomi. 2009. “Loop-mediated Isothermal Amplification (LAMP): A Rapid, Accurate, and Cost-effective Diagnostic Method for Infectious Diseases.” Journal of Infection and Chemotherapy 15: 62–69. doi:10.1007/s10156-009-0669-9.
  • Niessen, L., J. Luo, C. Denschlag, and R. F. Vogel. 2013. “The Application of Loop-mediated Isothermal Amplification (LAMP) in Food Testing for Bacterial Pathogens and Fungal Contaminants.” Food Microbiology 36: 191–206. doi:10.1016/j.fm.2013.04.017.
  • Notomi, T., H. Okayama, H. Masubuchi, T. Yonekawa, K. Watanabe, N. Amino, and T. Hase. 2000. “Loop-mediated Isothermal Amplification of DNA.” Nucleic Acids Research 28: E63. doi:10.1093/nar/28.12.e63.
  • Notomi, T., Y. Mori, N. Tomita, and H. Kanda. 2015. “Loop-mediated Isothermal Amplification (LAMP): Principle, Features, and Future Prospects.” Journal of Microbiology 53: 1–5. doi:10.1007/s12275-015-4656-9.
  • Park, S. F. 2005. “Campylobacter jejuni Stress Responses during Survival in the Food Chain and Colonization.” In Campylobacter: Molecular and Cellular Biology, edited by J. M. Ketley and M. E. Konkel, 311–330. Norfolk, United Kingdom: Horizon Bioscience.
  • Perez-Arnedo, I., and E. Gonzalez-Fandos. 2019. “Prevalence of Campylobacter spp. in Poultry in Three Spanish Farms, a Slaughterhouse and a Further Processing Plant.” Foods 8: 111. doi:10.3390/foods8030111.
  • Plutzer, J., and P. Karanis. 2009. “Rapid Identification of Giardia Duodenalis by Loop-mediated Isothermal Amplification (LAMP) from Faecal and Environmental Samples and Comparative Findings by PCR and Real-time PCR Methods.” Parasitology Research 104: 1527–1533. doi:10.1007/s00436-009-1391-3.
  • Romero, M. R., M. D’Agostino, A. P. Arias, S. Robles, C. F. Casado, L. O. Iturbe, O. G. Lerma, M. Andreou, and N. Cook. 2016. “An Immunomagnetic Separation/loop‐mediated Isothermal Amplification Method for Rapid Direct Detection of Thermotolerant Campylobacter spp. during Poultry Production.” Journal of Applied Microbiology 120: 469–477. doi:10.1111/jam.13008.
  • Romero, M. R., and N. Cook. 2018. “A Rapid LAMP-based Method for Screening Poultry Samples for Campylobacter without Enrichment.” Frontiers in Microbiology 9: 2401. doi:10.3389/fmicb.2018.02401.
  • Rouger, A., O. Tresse, and M. Zagorec. 2017. “Bacterial Contaminants of Poultry Meat: Sources, Species, and Dynamics.” Microorganisms 5: 50. doi:10.3390/microorganisms5030050.
  • Sarowska, J., M. Frej-Mądrzak, A. Jama-Kmiecik, A. Kilian, D. Teryks-Wołyniec, and I. Choroszy-Król. 2016. “Detection of Salmonella in Foods Using a Reference PN-ISO Method and an Alternative Method Based on Loop-mediated Isothermal Amplification Coupled with Bioluminescence.” Advances in Clinical and Experimental Medicine 25: 945–950. doi:10.17219/acem/63000.
  • Skarp, C. P. A., M. L. Hänninen, and H. I. K. Rautelin. 2016. “Campylobacteriosis: The Role of Poultry Meat.” Clinical Microbiology and Infection 22: 103–109. doi:10.1016/j.cmi.2015.11.019.
  • Souii, A., M. B. M´hadheb-Gharbi, and J. Gharbi. 2016. “Nucleic Acid-based Biotechnologies for Food-borne Pathogen Detection Using Routine Time-intensive Culture-based Methods and Fast Molecular Diagnostics.” Food Science and Biotechnology 25: 11–20. doi:10.1007/s10068-016-0002-1.
  • USDA FSIS. 2015. “Changes to the Salmonella and Campylobacter Verification Testing Program: Proposed Performance Standards for Salmonella and Campylobacter in Not-Ready-to-Eat Comminuted Chicken and Turkey Products and Raw Chicken Parts and Related Agency Verification Procedures and Other Changes to Agency Sampling. FSIS-2014-0023.” Federal Register 80: 3940–3950.
  • USDA FSIS. 2016. “New Neutralizing Buffered Peptone Water to Replace Current Buffered Peptone Water for Poultry Verification Sampling.” Food Safety and Inspection Service Notice 41-16. Accessed 1 June 2020. https://www.fsis.usda.gov/wps/wcm/connect/2cb982e0-625c-483f-9f50-6f24bc660f33/41-16.pdf?MOD=AJPERES.
  • USDA FSIS. 2019. “Changes to the Campylobacter Verification Testing Program: Revised Performance Standards for Campylobacter in Not-Ready-to-Eat Comminuted Chicken and Turkey and Related Agency Procedures.” FSIS-2018-0044. Federal Register 84: 38203–38210.
  • Wehling, P., R. A. LaBudde, and M. T. Nelson. 2011. “Probability of Detection (POD) as a Statistical Model for the Validation of Qualitative Methods.” Journal of AOAC International 94: 335–347. doi:10.1093/jaoac/94.1.335.
  • Wiedmann, M., S. Wang, L. Post, and K. Nightingale. 2014. “Assessment Criteria and Approaches for Rapid Detection Methods to be Used in the Food Industry.” Journal of Food Protection 77: 670–690. doi:10.4315/0362-028X.JFP-13-138.
  • Yamazaki, W., M. Taguchi, T. Kawai, K. Kawatsu, J. Sakata, K. Inoue, and N. Misawa. 2009. “Comparison of Loop-mediated Isothermal Amplification Assay and Conventional Culture Methods for Detection of Campylobacter jejuni and Campylobacter coli in Naturally Contaminated Chicken Meat Samples.” Applied Environmental Microbiology 75: 1597–1603. doi:10.1128/AEM.02004-08.
  • Yang, Q., F. Wang, W. Prinyawiwatkul, and B. Ge. 2014. “Robustness of Salmonella Loop-mediated Isothermal Amplification Assays for Food Applications.” Journal of Applied Microbiology 116: 81–88. doi:10.1111/jam.12340.
  • Yang, Q., K. J. Domesle, and B. Ge. 2018. “Loop-mediated Isothermal Amplification for Salmonella Detection in Food and Feed: Current Applications and Future Directions.” Foodborne Pathogens and Disease 15: 309–331. doi:10.1089/fpd.2018.2445.
  • Yang, Q., K. J. Domesle, F. Wang, and B. Ge. 2016. “Rapid Detection of Salmonella in Food and Feed by Coupling Loop-mediated Isothermal Amplification with Bioluminescent Assay in Real-time.” BMC Microbiology 16: 112. doi:10.1186/s12866-016-0730-7.
  • Zhang, G., E. W. Brown, and N. González-Escalona. 2011. “Comparison of Real-time PCR, Reverse Transcriptase Real-time PCR, Loop-mediated Isothermal Amplification, and the FDA Conventional Microbiological Method for the Detection of Salmonella spp. in Produce.” Applied Environmental Microbiology 77: 6495–6501. doi:10.1128/AEM.00520-11.