1,003
Views
0
CrossRef citations to date
0
Altmetric
Nutrition & Metabolism

Tolerability of graded levels of tall oil fatty acids as a nutritional additive for broiler chickens: a 45-day target animal safety study

ORCID Icon, , , , , & show all
Pages 847-856 | Received 10 Feb 2022, Accepted 23 Jun 2022, Published online: 09 Sep 2022

References

  • Aguirre, M., J. Vuorenmaa, E. Valkonen, H. Kettunen, C. Callens, F. Haesebrouck, R. Ducatelle, F. Van Immerseel, and E. Goossens. 2019. “In‑Feed Resin Acids Reduce Matrix Metalloproteinase Activity in the Ileal Mucosa of Healthy Broilers without Inducing Major Effects on the Gut Microbiota.” Veterinary Research 50 (15): 1–14. doi:10.1186/s13567-019-0633-3.
  • AOAC. 2005. Official Methods of Analysis. 18th ed. Gaithersburg, MD: Association of Official Analytical Chemists.
  • AOAC. 2012. Official Methods of Analysis. 19th ed. Gaithersburg, MD: Association of Official Analytical Chemists.
  • Apajalahti, J., K. Vienola, K. Raatikainen, H. Kettunen, and J. Vuorenmaa. 2020. “Distribution, Metabolism, and Recovery of Resin Acids in the Intestine and Tissues of Broiler Chickens in a Feeding Trial with Tall Oil Fatty Acid-Supplemented Diets.” Frontiers in Veterinary Science 7: 437. doi:10.3389/fvets.2020.00437.
  • Baker, E. J., E. A. Miles, and P. C. Calder. 2021. “A Review of the Functional Effects of Pine Nut Oil, Pinolenic Acid and Its Derivative Eicosatrienoic Acid and Their Potential Health Benefits.” Progress in Lipid Research 82: 101097. doi:10.1016/j.plipres.2021.101097.
  • FASS (Federation of Animal Science Societies). 2010. Guide for the Care and Use of Agricultural Animals in Research and Teaching. 3rd ed. Champaign: Federation of Animal Science Societies. http://www.fass.org.
  • Ferramosca, A., V. Savy, A. W. Einerhand, and V. Zara. 2008. “Pinus Koraiensis Seed Oil (Pinnothintm) Supplementation Reduces Body Weight Gain and Lipid Concentration in Liver and Plasma of Mice.” Journal of Animal and Feed Sciences 17 (4): 621–630. doi:10.22358/jafs/66690/2008.
  • Grafl, B., C. Garcia-Rueda, P. Cargill, A. Wood, A. Schock, D. Liebhart, A. Schachner, and M. Hess. 2018. “Fowl Aviadenovirus Serotype 1 Confirmed as the Aetiological Agent of Gizzard Erosions in Replacement Pullets and Layer Flocks in Great Britain by Laboratory and in Vivo Studies.” Avian Pathology 47 (1): 63–72. doi:10.1080/03079457.2017.1367364.
  • Grafl, B., D. Liebhart, A. Günes, P. Wernsdorf, F. Aigner, J. Bachmeier, and M. Hess. 2013. “Quantity of Virulent Fowl Adenovirus Serotype 1 Correlates with Clinical Signs, Macroscopical and Pathohistological Lesions in Gizzards following Experimental Induction of Gizzard Erosion in Broilers.” Veterinary Research 44: 38. doi:10.1186/1297-9716-44-38.
  • Hall, A. P., C. R. Elcombe, J. R. Foster, T. Harada, W. Kaufmann, A. Knippel, K. Küttler, et al. 2012. “Liver Hypertrophy: A Review of Adaptive (Adverse and Non-Adverse) Changes–Conclusions from the 3rd International ESTP Expert Workshop.” Toxicologic Pathology 40 (7): 971–994. doi:10.1177/2F0192623312448935.
  • Hasan, S., S. Saha, S. Junnikkala, T. Orro, O. Peltoniemi, and C. Oliviero. 2019. “Late Gestation Diet Supplementation of Resin Acid-Enriched Composition Increases Sow Colostrum Immunoglobulin G Content, Piglet Colostrum Intake and Improve Sow Gut Microbiota.” Animal 13 (8): 1599–1606. doi:10.1017/S1751731118003518.
  • Helfenstein, A., M. Vahermo, D. A. Nawrot, F. Demirci, G. İşcan, S. Krogerus, J. Yli-Kauhaluoma, V. M. Moreira, and P. Tammela. 2017. “Antibacterial Profiling of Abietane-Type Diterpenoids.” Bioorganic & Medicinal Chemistry 25 (1): 132–137. doi:10.1016/j.bmc.2016.10.019.
  • JECFA (Joint FAO/WHO Expert Committee on Food Additives). 1996. “Evaluation of Certain Food Additives and Contaminants”. Geneva, Switzerland: WHO Technical Report Series, 868. World Health Organization. https://apps.who.int/iris/handle/10665/41962.
  • JMP® 14.2.0. 2018. SAS Institute Inc., Cary, NC. https://www.jmp.com/en_gb/home.html.
  • JMP® 16.1.0. 2021. SAS Institute Inc., Cary, NC. https://www.jmp.com/en_gb/home.html
  • Kettunen, H., E. van Eerden, K. Lipiński, T. Rinttilä, E. Valkonen, and J. Vuorenmaa. 2017. “Dietary Resin Acid Composition as a Performance Enhancer for Broiler Chickens.” Journal of Applied Animal Nutrition 5 (e3): 1–8. doi:10.1017/jan.2016.10.
  • Kettunen, H., J. Vuorenmaa, T. Rinttilä, H. Grönberg, E. Valkonen, and J. Apajalahti. 2015. “Natural Resin Acid-Enriched Composition as Modulator of Intestinal Microbiota and Performance Enhancer in Broiler Chicken.” Journal of Applied Animal Nutrition 3 (e2): 1–9. doi:10.1017/jan.2014.11.
  • Kim, J. H., Y. Kim, Y. J. Kim, and Y. Park. 2016. “Conjugated Linoleic Acid: Potential Health Benefits as a Functional Food Ingredient.” Annual Review of Food Science and Technology 7: 221–244. doi:10.1146/annurev-food-041715-033028.
  • Koba, K., and T. Yanagita. 2014. “Health Benefits of Conjugated Linoleic Acid (CLA).” Obesity Research & Clinical Practice 8 (6): e525–e532. doi:10.1016/j.orcp.2013.10.001.
  • Lipiński, K., J. Vuorenmaa, M. Mazur-Kuśnirek, and Z. Antoszkiewicz. 2020. “Effect of Resin Acid Composition on Growth Performance, Footpad Dermatitis, Slaughter Value and Gastrointestinal Tract Development in Turkeys.” Journal of Applied Poultry Research 30 (1): 100112. doi:10.1016/j.japr.2020.10.011.
  • Lipiński, K., J. Vuorenmaa, M. Mazur-Kuśnirek, K. Sartowska-Żygowska, and H. Kettunen. 2021. “Dietary Resin Acid Concentrate Improved Performance of Broiler Chickens and Litter Quality in Three Experiments.” Animals 11: 3045. doi:10.3390/ani11113045.
  • Meriläinen, P. S., A. Krasnov, and A. Oikari. 2007. “Time- and Concentration-Dependent Metabolic and Genomic Responses to Exposure to Resin Acids in Brown Trout (Salmo Trutta M. Lacustris).” Environmental Toxicology and Chemistry 26 (9): 1827–1835. doi:10.1897/06-521R.1.
  • NRC (National Research Council). 1994. Nutrient Requirements of Poultry. 9th rev ed. Washington, U.S: National Academy Press. doi: 10.17226/2114.
  • San Feliciano, A., M. Gordaliza, M. A. Salinero, and J. M. M. Del Corral. 1993. “Abietane Acids: Sources, Biological Activities, and Therapeutic Uses.” Planta Medica 59 (6): 485–490. doi:10.1055/s-2006-959744.
  • Savluchinske-Feio, S., M. J. Curto, B. Gigante, and J. C. Roseiro. 2006. “Antimicrobial Activity of Resin Acid Derivatives.” Applied Microbiology and Biotechnology 72 (3): 430–436. doi:10.1007/s00253-006-0517-0.
  • Schuster, R. 1988. “Determination of Amino Acids in Biological, Pharmaceutical, Plant and Food Samples by Automated Precolumn Derivatization and High-Performance Liquid Chromatography.” Journal of Chromatography B: Biomedical Sciences and Applications 431: 271–284. doi:10.1016/S0378-4347(00)83096-0.
  • U.S. FDA (United States Food and Drug Administration). 2021a. “Title 21 of the Code of Federal Regulations. Food Additives Permitted for Direct Addition to Food for Human Consumption. Subpart F – Flavoring and Related Substances.” Section 172.510 Natural flavoring substances and natural substances used in conjunction with flavors.
  • U.S. FDA (United States Food and Drug Administration). 2021b. “Title 21 of the Code of Federal Regulations. Food Additives Permitted for Direct Addition to Food for Human Consumption. Subpart I – Multipurpose Additives.” Section 172.862 Oleic acid derived from tall oil fatty acids.
  • U.S. FDA (United States Food and Drug Administration). 2021c. “Title 21 of the Code of Federal Regulations. Food Additives Permitted for Direct Addition to Food for Human Consumption. Subpart H – Other Specific Usage Additives.” Section 172.735 Glycerol ester of rosin.
  • Uddin, M. K., S. Hasan, M. R. Mahmud, O. Peltoniemi, and C. Oliviero. 2021. “In-Feed Supplementation of Resin Acid-Enriched Composition Modulates Gut Microbiota, Improves Growth Performance, and Reduces Post-Weaning Diarrhea and Gut Inflammation in Piglets.” Animals 11 (9): 2511. doi:10.3390/ani11092511.
  • Vienola, K., G. Jurgens, J. Vuorenmaa, and J. Apajalahti. 2018. “Tall Oil Fatty Acid Inclusion in the Diet Improves Performance and Increases Ileal Density of Lactobacilli in Broiler Chickens.” British Poultry Science 59 (3): 349–355. doi:10.1080/00071668.2018.1455965.
  • Zhu, S., S. Park, Y. Lim, S. Shin, and S. N. Han. 2016. “Korean Pine Nut Oil Replacement Decreases Intestinal Lipid Uptake while Improves Hepatic Lipid Metabolism in Mice.” Nutrition Research and Practice 10 (5): 477–486. doi:10.4162/nrp.2016.10.5.477.