Publication Cover
Canadian Metallurgical Quarterly
The Canadian Journal of Metallurgy and Materials Science
Volume 56, 2017 - Issue 3
201
Views
4
CrossRef citations to date
0
Altmetric
Materials Behaviour and Performance

Effect of plasma nitriding parameters on corrosion performance of 17-4 PH stainless steel

ORCID Icon, &
Pages 322-331 | Received 10 Oct 2016, Accepted 03 Jun 2017, Published online: 28 Jun 2017

References

  • Hsiao C, Chiou C, Yang J. Aging reactions in a 17-4 PH stainless steel. Mater Chem Phys. 2002;74(2):134–142. doi: 10.1016/S0254-0584(01)00460-6
  • Murayama M, Hono K, Katayama Y. Microstructural evolution in a 17-4 PH stainless steel after aging at 400°C. Metall Mater Trans A. 1999;30(2):345–353. doi: 10.1007/s11661-999-0323-2
  • Viswanathan U, Banerjee S, Krishnan R. Effects of aging on the microstructure of 17-4 PH stainless steel. Mater Sci Eng A. 1988;104:181–189. doi: 10.1016/0025-5416(88)90420-X
  • Wang J, Zou H, Li C, et al. The spinodal decomposition in 17-4PH stainless steel subjected to long-term aging at 350 C. Mater Charact. 2008;59(5):587–591. doi: 10.1016/j.matchar.2007.04.018
  • Wang J, Zou H, Li C, et al. Relationship of microstructure transformation and hardening behavior of type 17-4 PH stainless steel. J Univ Sci Technol Beijing Miner Metall Mater. 2006;13(3):235–239.
  • Wu J-H, Lin C-K. Influence of frequency on high-temperature fatigue behavior of 17-4 PH stainless steels. Mater Trans. 2003;44(4):713–721. doi: 10.2320/matertrans.44.713
  • Jun W, Hong Z, Xiao-yong W, et al. The effect of long-term isothermal aging on dynamic fracture toughness of type 17-4 PH SS at 350°C. Mater Trans. 2005;46(4):846–851. doi: 10.2320/matertrans.46.846
  • Wang J, Zou H, Li C, et al. The effect of microstructural evolution on hardening behavior of type 17-4PH stainless steel in long-term aging at 350°C. Mater Charact 2006;57(4):274–280. doi: 10.1016/j.matchar.2006.02.004
  • Samandi M, Pauza A, Hatziandoniou G, et al. Microstructure and tribological behaviour of plasma immersion ion implanted tool steels. Surf Coat Technol. 1992;54-55:447–452. doi: 10.1016/S0257-8972(07)80064-8
  • Devi MU, Mohanty O. Plasma-nitriding of tool steels for combined percussive impact and rolling fatigue wear applications. Surf Coat Technol. 1998;107(1):55–64. doi: 10.1016/S0257-8972(98)00546-5
  • Li G, Peng Q, Li C, et al. Effect of DC plasma nitriding temperature on microstructure and dry-sliding wear properties of 316L stainless steel. Surf Coat Technol. 2008;202(12):2749–2754. doi: 10.1016/j.surfcoat.2007.10.002
  • Nouveau C, Steyer P, Rao KRM, et al. Plasma nitriding of 90CrMoV8 tool steel for the enhancement of hardness and corrosion resistance. Surf Coat Technol. 2011;205(19):4514–4520. doi: 10.1016/j.surfcoat.2011.03.087
  • Mohammadzadeh R, Akbari A, Drouet M. Microstructure and wear properties of AISI M2 tool steel on RF plasma nitriding at different N2–H2 gas compositions. Surf Coat Technol. 2014;258:566–573. doi: 10.1016/j.surfcoat.2014.08.036
  • Kliauga A, Pohl M. Effect of plasma nitriding on wear and pitting corrosion resistance of X2 CrNiMoN 22 5 3 duplex stainless steel. Surf Coat Technol. 1998;98(1):1205–1210. doi: 10.1016/S0257-8972(97)00240-5
  • Spies H-J, Eckstein C, Zimdars H. Structure and corrosion behaviour of stainless steels after plasma and gas nitriding. Surf Eng. 2002;18(6):459–460. doi: 10.1179/026708402225006286
  • Xi Y, Liu D, Han D. Improvement of erosion and erosion–corrosion resistance of AISI420 stainless steel by low temperature plasma nitriding. Appl Surf Sci. 2008;254(18):5953–5958. doi: 10.1016/j.apsusc.2008.03.189
  • Esfandiari M, Dong H. The corrosion and corrosion–wear behaviour of plasma nitrided 17-4PH precipitation hardening stainless steel. Surf Coat Technol. 2007;202(3):466–478. doi: 10.1016/j.surfcoat.2007.06.069
  • Wang J, Lin Y, Li M, et al. Effects of the treating time on microstructure and erosion corrosion behavior of salt-bath-nitrided 17-4PH stainless steel. Metall Mater Tran B. 2013;44(4):1010–1016. doi: 10.1007/s11663-013-9841-9
  • Liu R, Yan M. Improvement of wear and corrosion resistances of 17-4PH stainless steel by plasma nitrocarburizing. Mater Des. 2010;31(5):2355–2359. doi: 10.1016/j.matdes.2009.11.069
  • Ruiliang L, Yingjie Q, Mufu Y, et al. Mechanical and corrosion resistant properties of martensitic stainless steel plasma nitrocarburized with rare earths addition. J Rare Earths. 2012;30:826–830. doi: 10.1016/S1002-0721(12)60138-0
  • Takemura M, Magai T, Yoshino S. Annals of science the College of Liberal Arts, Kanazawa University, 1968, 4, 1–14.
  • Takemura M, Shinoda I, Kikuchi K, et al. Annals of science the College of Liberal Arts, Kanazawa University, 1967, 3, 53–66.
  • Christien F, Telling M, Knight K. A comparison of dilatometry and in-situ neutron diffraction in tracking bulk phase transformations in a martensitic stainless steel. Mater Charact. 2013;82:50–57. doi: 10.1016/j.matchar.2013.05.002
  • Bhattacharya D, Jayakumar T, Moorthy V, et al. Characterization of microstructures in 17-4-PH stainless steel by magnetic Barkhausen noise analysis. NDT E Int. 1993;26(3):141–148. doi: 10.1016/0963-8695(93)90600-Y
  • Matlack KH, Bradley HA, Thiele S, et al. Nonlinear ultrasonic characterization of precipitation in 17-4PH stainless steel. NDT E Int. 2015;71:8–15. doi: 10.1016/j.ndteint.2014.11.001
  • Kochmanski P, Nowacki J. Influence of initial heat treatment of 17-4 PH stainless steel on gas nitriding kinetics. Surf Coat Technol. 2008;202(19):4834–4838. doi: 10.1016/j.surfcoat.2008.04.058
  • Bernardelli E, Borges P, Fontana L, et al. Role of plasma nitriding temperature and time in the corrosion behavior and microstructure evolution of 15-5 PH stainless steel. Kovové Materiály. 2010;48(2):105–116.
  • Yetim A, Yildiz F, Alsaran A, et al. Surface modification of 316L stainless steel with plasma nitriding. Kovove Materialy. 2008;46(2):105.
  • Li C, Bell T. Corrosion properties of active screen plasma nitrided 316 austenitic stainless steel. Corros Sci. 2004;46(6):1527–1547. doi: 10.1016/j.corsci.2003.09.015
  • Blawert C, Mordike B, Collins G, et al. Influence of process parameters on the nitriding of steels by plasma immersion ion implantation. Surf Coat Technol. 1998;103-104:240–247. doi: 10.1016/S0257-8972(98)00402-2
  • Danaee I, Noori S. Kinetics of the hydrogen evolution reaction on NiMn graphite modified electrode. Int J Hydrog Energy. 2011;36(19):12102–12111. doi: 10.1016/j.ijhydene.2011.06.106
  • Khomami MN, Danaee I, Attar A, et al. Effects of NO2− and NO3− ions on corrosion of AISI 4130 steel in ethylene glycol + water electrolyte. Trans Indian Inst Met. 2012;65(3):303–311. doi: 10.1007/s12666-012-0134-9
  • Shukla SK, Quraishi M. 4-Substituted anilinomethylpropionate: new and efficient corrosion inhibitors for mild steel in hydrochloric acid solution. Corros Sci. 2009;51(9):1990–1997. doi: 10.1016/j.corsci.2009.05.020
  • Fekry A. The influence of chloride and sulphate ions on the corrosion behavior of Ti and Ti-6Al-4V alloy in oxalic acid. Electrochim Acta. 2009;54(12):3480–3489. doi: 10.1016/j.electacta.2008.12.060

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.