Publication Cover
Canadian Metallurgical Quarterly
The Canadian Journal of Metallurgy and Materials Science
Volume 57, 2018 - Issue 1
1,726
Views
59
CrossRef citations to date
0
Altmetric
Invited Review

The technology of CO2 sequestration by mineral carbonation: current status and future prospects

ORCID Icon, , &
Pages 46-58 | Received 10 Apr 2017, Accepted 28 Aug 2017, Published online: 15 Sep 2017

References

  • Climate Change 2014. Mitigation of Climate Change, 2014. doi:10.1017/CBO9781107415416.
  • Sanna A, Uibu M, Caramanna G, et al. A review of mineral carbonation technologies to sequester CO2. Chem Soc Rev. 2014;43:8049–8080. doi: 10.1039/C4CS00035H
  • Seifritz W. CO2 disposal by means of silicates. Nature. 1990;345(6275):486. doi: 10.1038/345486b0
  • Huijgen WJ, Comans RN. Carbon dioxide sequestration by mineral carbonation: literature review update 2003–2004. Energy Research Centre of the Netherlands, ECN-C–05-022, Petten, The Netherlands, 2014.
  • Sipilä J, Teir S, Zevenhoven R. Carbon dioxide sequestration by mineral carbonation: literature review update 2005–2007. Heat Engineering Laboratory, Åbo Akademi University, Turku, Finland, 2008.
  • Doucet FJ. Scoping study on CO2 mineralization technologies. Report No. CGS-2011-007, Pretoria, South Africa, 2011.
  • Oskierski HC, Dlugogorski BZ, Jacobsen G. Sequestration of atmospheric CO2 in chrysotile mine tailings of the woodsreef asbestos mine, Australia: quantitative mineralogy, isotopic fingerprinting and carbonation rates. Chem Geol. 2013;358:156–169. doi: 10.1016/j.chemgeo.2013.09.001
  • Matter JM, Kelemen PB. Permanent storage of carbon dioxide in geological reservoirs by mineral carbonation. Nat Geosci. 2009;2:837–841. doi: 10.1038/ngeo683
  • Tomkinson T, Lee MR, Mark DF, et al. Sequestration of Martian CO2 by mineral carbonation. Nat Commun. 2013;4:2662. doi:10.1038/ncomms3662.
  • Teir S, Eloneva S, Fogelholm CJ, et al. Stability of calcium carbonate and magnesium carbonate in rainwater and nitric acid solutions. Energy Convers Manag. 2006;47(18–19):3059–3068. doi: 10.1016/j.enconman.2006.03.021
  • Renforth P, Washbourne CL, Taylder J, et al. Silicate production and availability for mineral carbonation. Environ Sci Technol. 2011;45:2035–2041. doi: 10.1021/es103241w
  • Zevenhoven R, Fagerlund J. Fixation of carbon dioxide into inorganic carbonates: the natural and artificial ‘Weathering of Silicates’. In Aresta M, editor. Carbon dioxide as chemical feedstock. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2010. p. 353–379.
  • Dahlin DC, O’Connor WK, Nilsen DN, et al. A method for permanent CO2 mineral carbonation. 17th Annual International Pittsburgh Coal Conference; September 2000, 1–14. DOE/ARC-2000-012.
  • Olajire AA. A review of mineral carbonation technology in sequestration of CO2. J Pet Sci Eng. 2013;109:364–392. doi: 10.1016/j.petrol.2013.03.013
  • Huijgen WJ, Comans RN. Carbon dioxide sequestration by mineral carbonation: literature review. Energy Research Centre of the Netherlands, ECN-C–03-016, Petten, The Netherlands, 2003.
  • Mazzotti M, Carlos J, Allam R, et al. Mineral carbonation and industrial uses of carbon dioxide. In: B. Eliasson and R.T. Sutamihardja, editor. IPCC special report on carbon dioxide capture and storage. Cambridge: Cambridge University Press; 2005. p. 319–338.
  • Mckelvy MJ, Chizmeshya AV, Squires K, et al. A novel approach to mineral carbonation: enhancing carbonation while avoiding mineral pretreatment process cost. Center for Solid State Science, Arizona State University, DOE:DE-FG26-04NT42124, Tempe, Arizona, 2006.
  • Verduyna M, Geerlingsa H, Van-Mossel G, et al. Review of the various CO2 mineralization product forms. Energy Procedia. 2011;4:2885–2892. doi: 10.1016/j.egypro.2011.02.195
  • Ben Ghacham A, Cecchi E, Pasquier LC, et al. CO2 sequestration using waste concrete and anorthosite tailings by direct mineral carbonation in gas-solid-liquid and gas-solid routes. J Environ Manage. 2015;163:70–77. doi: 10.1016/j.jenvman.2015.08.005
  • Tamilselvi Dananjayan RR, Kandasamy P, Andimuthu R. Direct mineral carbonation of coal fly ash for CO2 sequestration. J Clean Prod. 2016;112:4173–4182. doi: 10.1016/j.jclepro.2015.05.145
  • Kwon S, Fan M, DaCosta HF, et al. Factors affecting the direct mineralization of CO2 with olivine. J Environ Sci. 2011;23(8):1233–1239. doi: 10.1016/S1001-0742(10)60555-4
  • Zevenhoven R, Slotte M, Åbacka J, et al. A comparison of CO2 mineral sequestration processes involving a dry or wet carbonation step. Energy. 2016;117:604–611. doi: 10.1016/j.energy.2016.05.066
  • Jacobs AD. Quantifying the mineral carbonation potential of mine waste material: a new parameter for geospatial estimation [PhD thesis] Vancouver, BC, Canada: University of British Columbia; 2014.
  • Oelkers EH, Gislason SR, Matter J. Mineral carbonation of CO2. Elements. 2008;4:333–337. doi: 10.2113/gselements.4.5.333
  • Matter JM, Stute M, Snæbjörnsdottir S, et al. Rapid carbon mineralization for permanent disposal of anthropogenic carbon dioxide emissions. Science. 2016;352(6291):1312–1314. doi: 10.1126/science.aad8132
  • Declercq J, Oelkers EH. CarbFix Report: PHREEQC mineral dissolution kinetics database. 2014. CarbFix Project No.281348, WP5-PHREEQC Database.
  • Aradóttir ES, Sonnenthal EL, Jónsson H. Development and evaluation of a thermodynamic dataset for phases of interest in CO2 mineral sequestration in basaltic rocks. Chem Geol. 2012;304-305:26–38. doi: 10.1016/j.chemgeo.2012.01.031
  • Alfredsson HA, Oelkers EH, Hardarsson BS, et al. The geology and water chemistry of the Hellisheidi, SW-Iceland carbon storage site. Int J Greenh Gas Control. 2013;12:399–418. doi: 10.1016/j.ijggc.2012.11.019
  • Sigfusson B, Gislason SR, Matter JM, et al. Solving the carbon-dioxide buoyancy challenge: the design and field testing of a dissolved CO2 injection system. Int J Greenh Gas Control. 2015;37:213–219. doi: 10.1016/j.ijggc.2015.02.022
  • Lu J, Mickler PJ, Nicot JP, et al. Geochemical impact of O2 impurity in CO2 stream on carbonate carbon-storage reservoirs. Int J Greenh Gas Control. 2016;47(2):159–175. doi: 10.1016/j.ijggc.2016.01.039
  • Gislason SR, Oelkers EH. Carbon storage in basalt. Science. 2014;344(6182):373–374. doi: 10.1126/science.1250828
  • Hangx S, Bakker E, Bertier P, et al. Chemical–mechanical coupling observed for depleted oil reservoirs subjected to long-term CO2-exposure – A case study of the Werkendam natural CO2 analogue field. Earth Planet Sci Lett. 2015;428:230–242. doi: 10.1016/j.epsl.2015.07.044
  • Ahmadi MA, Pouladi B, Barghi T. Numerical modeling of CO2 injection scenarios in petroleum reservoirs: application to CO2 sequestration and EOR. J Nat Gas Sci Eng. 2016;30:38–49. doi: 10.1016/j.jngse.2016.01.038
  • Marini L. Geological sequestration of carbon dioxide: thermodynamics, kinetics, and reaction path modeling. 1st ed., Vol. 11. Amsterdam: Elsevier Science; 2007.
  • Kelemen P. Melt extraction from the mantle beneath mid-ocean ridges. Oceanus. 1998;41(1):23–28.
  • Dichicco MC, Laurita S, Paternoster M, et al. Serpentinite carbonation for CO2 sequestration in the Southern Apennines: preliminary study. Energy Procedia. 2015;76:477–486. doi: 10.1016/j.egypro.2015.07.888
  • Kelemen PB, Matter J. In situ carbonation of peridotite for CO2 storage. Proc Natl Acad Sci U.S.A. 2008;105(45):17295–17300. doi: 10.1073/pnas.0805794105
  • Lechat K, Lemieux JM, Molson J, et al. Field evidence of CO2 sequestration by mineral carbonation in ultramafic milling wastes, thetford mines, Canada. Int J Greenh Gas Control. 2016;47:110–121. doi: 10.1016/j.ijggc.2016.01.036
  • Schaef HT, Miller QR, Thompson CJ, et al. Silicate carbonation in supercritical CO2 containing dissolved H2O: an in situ high pressure X-Ray diffraction and infrared spectroscopy study. Energy Procedia. 2013;37(509):5892–5896. doi: 10.1016/j.egypro.2013.06.514
  • Zhang S, Liu HH. Porosity-permeability relationships in modeling salt precipitation during CO2 sequestration: review of conceptual models and implementation in numerical simulations. Int J Greenh Gas Control. 2016;52:24–31. doi: 10.1016/j.ijggc.2016.06.013
  • O’Connor WK, Dahlin DC, Nilsen DN, et al. Carbon dioxide sequestration by direct mineral carbonation with carbonic acid. Proceedings of the 25th International Technical Conference on ‘Coal Utilization & Fuel Systems’. Coal Technology Association, Clearwater, FL, USA, 2000.
  • O’Connor WK, Rush GE. Applications of mineral carbonation to geological sequestration of CO2. Albany Research Centre, DOE/ARC–2005-010, Albany, OR, USA, 2005.
  • O’Connor WK, Dahlin DC, Rush GE, et al. Aqueous mineral carbonation: mineral availability, pretreatment, reaction parametrics and process studies. Albany Research Centre, DOE/ARC-TR-04-002, Albany, OR, USA, 2004.
  • Penner L, O’Connor WK, Dahlin DC, et al. Mineral carbonation: energy costs of pretreatment options and insights gained from flow loop reaction studies. Albany Research Centre, DOE/ARC–2004-042, OR, USA, 2004.
  • Gerdemann SJ, O’Connor WK, Dahlin DC, et al. Ex situ aqueous mineral carbonation. Environ Sci Technol. 2007;41:2587–2593. doi: 10.1021/es0619253
  • O’Connor WK, Dahlin DC, Nilsen DN, et al. Carbon dioxide sequestration by direct mineral carbonation: results from recent studies and current status’. In: Proceedings of the 1st National Conference on Carbon Sequestration, Alexandria, VA, USA, 2001.
  • Pasquier LC, Mercier G, Blais JF, et al. Parameters optimization for direct flue gas CO2 capture and sequestration by aqueous mineral carbonation using activated serpentinite based mining residue. Appl Geochem. 2014;50:66–73. doi: 10.1016/j.apgeochem.2014.08.008
  • Garcia B, Beaumont V, Perfetti E, et al. Experiments and geochemical modelling of CO2 sequestration by olivine: potential, quantification. Appl Geochem. 2010;25(9):1383–1396. doi: 10.1016/j.apgeochem.2010.06.009
  • Koukouzas N, Gemeni V, Ziock HJ. Sequestration of CO2 in magnesium silicates, in western Macedonia, Greece. Int J Miner Process. 2009;93(2):179–186. doi: 10.1016/j.minpro.2009.07.013
  • Harrison AL, Power IM, Dipple GM. Accelerated carbonation of brucite in mine tailings for carbon sequestration. environ. Sci Technol. 2013;47:126–134. doi: 10.1021/es3012854
  • Power IM, Harrison AL, Dipple GM. Accelerating mineral carbonation using carbonic anhydrase. Environ Sci Technol. 2016;50:2610–2618. doi: 10.1021/acs.est.5b04779
  • Daval D, Hellmann R, Martinez I, et al. Lizardite serpentine dissolution kinetics as a function of pH and temperature, including effects of elevated pCO2. Chem Geol. 2013;351:245–256. doi: 10.1016/j.chemgeo.2013.05.020
  • Santos RM, Knops PC, Rijnsburger KL, et al. CO2 energy reactor–integrated mineral carbonation: perspectives on lab-scale investigation and products valorization. Front Energy Res. 2016;4:1–6. doi: 10.3389/fenrg.2016.00005
  • Giammar DE, Bruant RG, Peters CA. Forsterite dissolution and magnesite precipitation at conditions relevant for deep saline aquifer storage and sequestration of carbon dioxide. Chem Geol. 2005;217:257–276. doi: 10.1016/j.chemgeo.2004.12.013
  • Gilbert K, Bennett PC, Wolfe W, et al. CO2 solubility in aqueous solutions containing Na+, Ca2+, Cl−, SO42− and HCO3−: the effects of electrostricted water and ion hydration thermodynamics. Appl Geochem. 2016;67:59–67. doi: 10.1016/j.apgeochem.2016.02.002
  • Prigiobbe V, Hänchen M, Werner M, et al. Mineral carbonation process for CO2 sequestration. Energy Procedia. 2009;1(1):4885–4890. doi: 10.1016/j.egypro.2009.02.318
  • Pokrovsky OS, Schott J. Kinetics and mechanism of forsterite dissolution at 25°C and pH from 1 to 12. Geochim Cosmochim Acta. 2000;64(19):3313–3325. doi: 10.1016/S0016-7037(00)00434-8
  • Fabian M, Shopska M, Paneva D, et al. The influence of attrition milling on carbon dioxide sequestration on magnesium-iron silicate. Miner Eng. 2010;23(8):616–620. doi: 10.1016/j.mineng.2010.02.006
  • Baláž P, Turianicová E, Fabián M, et al. Structural changes in olivine (Mg,Fe)2SiO4 mechanically activated in high-energy mills. Int J Miner Process. 2008;88(1-2):1–6. doi: 10.1016/j.minpro.2008.04.001
  • Haug TA, Kleiv RA, Munz IA. Investigating dissolution of mechanically activated olivine for carbonation purposes. Appl Geochem. 2010;25(10):1547–1563. doi: 10.1016/j.apgeochem.2010.08.005
  • Li J, Hitch M. Carbon dioxide adsorption isotherm study on mine waste for integrated CO2 capture and sequestration processes. Powder Technol. 2016;291:408–413. doi: 10.1016/j.powtec.2015.12.011
  • Li J, Hitch M. Mechanical activation of ultramafic mine waste rock in dry condition for enhanced mineral carbonation. Miner Eng. 2016;95:1–4. doi: 10.1016/j.mineng.2016.05.020
  • Rigopoulos I, Petallidou KC, Vasiliades MA, et al. Carbon dioxide storage in olivine basalts: effect of ball milling process. Powder Technol. 2015;273:220–229. doi: 10.1016/j.powtec.2014.12.046
  • Rigopoulos I, Vasiliades MA, Ioannou I, et al. Enhancing the rate of ex situ mineral carbonation in dunites via ball milling. Adv Powder Technol. 2016;27(2):360–371. doi: 10.1016/j.apt.2016.01.007
  • Turianicová E, Baláž P, Tuček Ľ, et al. A comparison of the reactivity of activated and non-activated olivine with CO2. Int J Miner Process. 2013;123:73–77. doi: 10.1016/j.minpro.2013.05.006
  • Kleiv RA, Thornhill M. Mechanical activation of olivine. Miner Eng. 2006;19(4):340–347. doi: 10.1016/j.mineng.2005.08.008
  • Park AH, Fan LS. CO2 mineral sequestration: physically activated dissolution of serpentine and pH swing process. Chem Eng Sci. 2004;59(22-23):5241–5247. doi: 10.1016/j.ces.2004.09.008
  • Turianicová E, Obut A, Tuček Ľ, et al. Interaction of natural and thermally processed vermiculites with gaseous carbon dioxide during mechanical activation. Appl Clay Sci. 2014;88-89:86–91. doi: 10.1016/j.clay.2013.11.005
  • Santos R, Van Audenaerde A, Chiang Y, et al. Nickel extraction from olivine: effect of carbonation pre-treatment. Metals (Basel). 2015;5(3):1620–1644. doi: 10.3390/met5031620
  • Power IM, Harrison AL, Dipple GM, et al. Carbon sequestration via carbonic anhydrase facilitated magnesium carbonate precipitation. Int J Greenh Gas Control. 2013;16:145–155. doi: 10.1016/j.ijggc.2013.03.011
  • Munz IA, Kihle J, Brandvoll Ø, et al. A continuous process for manufacture of magnesite and silica from olivine, CO2 and H2O. Energy Procedia. 2009;1(1):4891–4898. doi: 10.1016/j.egypro.2009.02.319
  • Meyer NA, Vögeli JU, Becker M, et al. Mineral carbonation of PGM mine tailings for CO2 storage in South Africa: a case study. Miner Eng. 2014;59:45–51. doi: 10.1016/j.mineng.2013.10.014
  • Kemache N, Pasquier LC, Mouedhen I, et al. Aqueous mineral carbonation of serpentinite on a pilot scale: the effect of liquid recirculation on CO2 sequestration and carbonate precipitation. Appl Geochem. 2016;67:21–29. doi: 10.1016/j.apgeochem.2016.02.003
  • Sanna A, Dri M, Maroto-Valer M. Carbon dioxide capture and storage by pH swing aqueous mineralisation using a mixture of ammonium salts and antigorite source. Fuel. 2013;114:153–161. doi: 10.1016/j.fuel.2012.08.014
  • Sanna A, Wang X, Lacinska A, et al. Enhancing Mg extraction from lizardite-rich serpentine for CO2 mineral sequestration. Miner Eng. 2013;49:135–144. doi: 10.1016/j.mineng.2013.05.018
  • Azdarpour A, Asadullah M, Mohammadian E, et al. A review on carbon dioxide mineral carbonation through pH-swing process. Chem Eng J. 2015;279:615–630. doi: 10.1016/j.cej.2015.05.064
  • Romão IS, Gando-Ferreira LM, Da Silva MM, et al. CO2 sequestration with serpentinite and metaperidotite from Northeast Portugal. Miner Eng. 2016;94:104–114. doi: 10.1016/j.mineng.2016.05.009
  • Fagerlund J, Nduagu E, Romão I, et al. CO2 fixation using magnesium sillicate minerals part 1: process description and performance. Energy. 2012;41:184–191.
  • Pasquier LC, Mercier G, Blais JF, et al. Technical & economic evaluation of a mineral carbonation process using southern Québec mining wastes for CO2 sequestration of raw flue gas with by-product recovery. Int J Greenh Gas Control. 2016;50:147–157. doi: 10.1016/j.ijggc.2016.04.030
  • Gabbard A. Coal combustion: nuclear resource or danger. ORNL Rev. 1993;26(3):1–9.
  • Huijgen W, Witkamp GJ, Comans R. Mineral CO2 sequestration in alkaline solid residues. Proceedings of 7th International Conference on ‘Greenhouse Gas Control Technologies, Vancouver, Canada, September 2004, ECN-RX-04-079.
  • Mayoral MC, Andrés JM, Gimeno MP. Optimization of mineral carbonation process for CO2 sequestration by lime-rich coal ashes. Fuel. 2013;106:448–454. doi: 10.1016/j.fuel.2012.11.042
  • Hosseini T, Haque N, Selomulya C, et al. Mineral carbonation of Victorian brown coal fly ash using regenerative ammonium chloride-process simulation and techno-economic analysis. Appl Energy. 2016;175:54–68. doi: 10.1016/j.apenergy.2016.04.093
  • Nyambura MG, Mugera GW, Felicia PL, et al. Carbonation of brine impacted fractionated coal fly ash: implications for CO2 sequestration. J Environ Manage. 2011;92(3):655–664. doi: 10.1016/j.jenvman.2010.10.008
  • Han SJ, Im HJ, Wee JH. Leaching and indirect mineral carbonation performance of coal fly ash-water solution system. Appl Energy. 2015;142:274–282. doi: 10.1016/j.apenergy.2014.12.074
  • Reynolds B, Reddy KJ, Argyle MD. Field application of accelerated mineral carbonation. Minerals. 2014;4:191–207. doi: 10.3390/min4020191
  • Kasina M, Kowalski PR, Michalik M. Mineral carbonation of metallurgical slags. Mineralogia. 2014;45(1-2):27–45.
  • Santos RM, François D, Mertens G, et al. Ultrasound-intensified mineral carbonation. Appl Therm Eng. 2013;57:154–163. doi: 10.1016/j.applthermaleng.2012.03.035
  • Su TH, Yang HJ, Shau YH, et al. CO2 sequestration utilizing basic-oxygen furnace slag: controlling factors, reaction mechanisms and V-Cr concerns. J Environ Sci. 2016;41:99–111. doi: 10.1016/j.jes.2015.06.012
  • Polettini A, Pomi R, Stramazzo A. Carbon sequestration through accelerated carbonation of BOF slag: influence of particle size characteristics. Chem Eng J. 2016;298:26–35. doi: 10.1016/j.cej.2016.04.015
  • Fernández Bertos M, Li X, Simons SJ, et al. Investigation of accelerated carbonation for the stabilisation of MSW incinerator ashes and the sequestration of CO2. Green Chem. 2004;6(8):428–436. doi: 10.1039/B401872A
  • Araizi PK, Hills CD, Maries A, et al. Enhancement of accelerated carbonation of alkaline waste residues by ultrasound. Waste Manag. 2016;50:121–129. doi: 10.1016/j.wasman.2016.01.006
  • Song K, Kim W, Park S, et al. Effect of polyacrylic acid on direct aqueous mineral carbonation of flue gas desulfurization gypsum. Chem Eng J. 2016;301:51–57. doi: 10.1016/j.cej.2016.04.142
  • Song K, Kim W, Bang JH, et al. Polymorphs of pure calcium carbonate prepared by the mineral carbonation of flue gas desulfurization gypsum. Mater Des. 2015;83:308–313. doi: 10.1016/j.matdes.2015.06.051
  • Xuan D, Zhan B, Poon CS. Development of a new generation of eco-friendly concrete blocks by accelerated mineral carbonation. J Clean Prod. 2016;133:1235–1241. doi: 10.1016/j.jclepro.2016.06.062

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.