Publication Cover
Canadian Metallurgical Quarterly
The Canadian Journal of Metallurgy and Materials Science
Volume 57, 2018 - Issue 1
194
Views
10
CrossRef citations to date
0
Altmetric
Invited Paper Series: A Canadian Materials Science Symposium Honouring Professor Gary R. Purdy

Effects of martensite particle size and spatial distribution on work hardening behaviour of fine-grained dual-phase steel

ORCID Icon, &
Pages 28-37 | Received 14 Jul 2017, Accepted 01 Nov 2017, Published online: 26 Nov 2017

References

  • Tasan CC, Diehl M, Yan D, et al. An overview of dual-phase steels: advances in microstructure-oriented processing and micromechanically guided design. Annu Rev Mater Res. 2015;45:391–431. doi: 10.1146/annurev-matsci-070214-021103
  • Davenport AT, editor. Formable HSLA and dual-phase steels. New York, NY: Metallurgical Society of AIME; 1979.
  • Kot RA, Morris JW, editors. Structure and properties of dual phase steels. Warrendale, PA: Metallurgical Society of AIME; 1979.
  • Kot RA, Bramfitt BL, editors. Fundamentals of dual phase steels. Warrendale, PA: Metallurgical Society of AIME; 1981.
  • Gerbase J, Embury JD, Hobbs RM. The mechanical behavior of some dual-phase steels – with emphasis on the initial work hardening rate. In: Kot RA, Morris JW, editors. Structure and properties of dual phase steels. Warrendale, PA: Metallurgical Society of AIME; 1979. p. 118–144.
  • Embury JD, Duncan JL. Formability of dual phase steels. In: Kot RA, Bramfitt BL, editors. Fundamentals of dual phase steels. Warrendale, PA: Metallurgical Society of AIME; 1981. p. 333–345.
  • Lawson RD, Matlock DK, Krauss G. Effect of microstructure on the deformation behaviour and mechanical properties of a dual phase steel. In: Kot RA, Bramfitt BL, editors. Fundamentals of dual phase steels. Warrendale, PA: Metallurgical Society of AIME; 1981. p. 347–381.
  • Balliger NK, Gladman T. Work hardening of dual-phase steels. Metal Sci. 1981;15(3):95–108. doi: 10.1179/030634581790426615
  • Lanzillotto CAN, Pickering FB. Structure-property relationships in dual-phase steels. Metal Sci. 1982;16(8):371–382. doi: 10.1179/030634582790427433
  • Ashby MF. Work hardening of dispersion-hardened crystals. Philos Mag. 1966;14(132):1157–1178. doi: 10.1080/14786436608224282
  • Ashby MF. The deformation of plastically non-homogeneous materials. Philos Mag. 1970;21(170):399–424. doi: 10.1080/14786437008238426
  • Speich GR. Physical metallurgy of dual-phase steels. In: Kot RA, Bramfitt BL, editors. Fundamentals of dual phase steels. Warrendale, PA: Metallurgical Society of AIME; 1981. p. 3–45.
  • Korzekwa DA, Matlock DK, Krauss G. Dislocation substructure as a function of strain in a dual-phase steel. Metall Mater Trans A. 1984;15(6):1221–1228. doi: 10.1007/BF02644716
  • Speich GR, Miller RL. Mechanical properties of ferrite martensite steels. In: Kot RA, Morris JW, editors. Structure and properties of dual phase steels. Warrendale, PA: Metallurgical Society of AIME; 1979. p. 145–182.
  • Jiang Z, Guan Z, Lian J. Effects of microstructural variables on the deformation behaviour of dual-phase steel. Mater Sci Eng A. 1995;190(1–2):55–64. doi: 10.1016/0921-5093(94)09594-M
  • Calcagnotto M, Adachi Y, Ponge D, et al. Deformation and fracture mechanisms in fine- and ultrafine-grained ferrite/martensite dual-phase steels and the effect of aging. Acta Mater. 2011;59(2):658–670. doi: 10.1016/j.actamat.2010.10.002
  • Calcagnotto PD, Raabe D. Effect of grain refinement to 1μm on strength and toughness of dual-phase steels. Mater Sci Eng A. 2010;527(29):7832–7840. doi: 10.1016/j.msea.2010.08.062
  • Delincé M, Bréchet Y, Embury JD, et al. Structure–property optimization of ultrafine-grained dual-phase steels using a microstructure-based strain hardening model. Acta Mater. 2007;55(7):2337–2350. doi: 10.1016/j.actamat.2006.11.029
  • Park KT, Lee YK, Shin DH. Fabrication of ultrafine grained ferrite/martensite dual phase steel by severe plastic deformation. ISIJ Int. 2005;45(5):750–755. doi: 10.2355/isijinternational.45.750
  • Son YI, Lee YK, Park KT, et al. Ultrafine grained ferrite–martensite dual phase steels fabricated via equal channel angular pressing: microstructure and tensile properties. Acta Mater. 2005;53(11):3125–3134. doi: 10.1016/j.actamat.2005.02.015
  • Mazinani M, Poole WJ. Effect of martensite plasticity on the deformation behavior of a low-carbon dual-phase steel. Metall Mater Trans A. 2007;38(2):328–339. doi: 10.1007/s11661-006-9023-3
  • Westphal M, McDermid JR, Boyd JD, et al. Novel thermal processing of dual phase steels: II – work hardening and fracture mechanisms. Can Metall Quarter. 2010;49(1):91–98. doi: 10.1179/cmq.2010.49.1.91
  • Das D, Chattopadhyay PP. Influence of martensite morphology on the work-hardening behavior of high strength ferrite–martensite dual-phase steel. J Mater Sci. 2009;44(11):2957–2965. doi: 10.1007/s10853-009-3392-0
  • Thomser C, Uthaisangsuk V, Bleck W. Influence of martensite distribution on the mechanical properties of dual phase steels: experiments and simulation. Steel Res Int. 2009;80(8):582–587.
  • Ramazani A, Mukherjee K, Schwedt A, et al. Quantification of the effect of transformation-induced geometrically necessary dislocations on the flow-curve modelling of dual-phase steels. Int J Plast. 2013;43:128–152. doi: 10.1016/j.ijplas.2012.11.003
  • Westphal M, McDermid JR, Boyd JD, et al. Novel thermal processing of dual phase steels: I – microstructural design. Can Metall Quarter. 2008;47(1):83–90. doi: 10.1179/cmq.2008.47.1.83
  • Seyedrezai H, Pilkey AK, Boyd JD. Effect of pre-IC annealing treatments on the final microstructure and work hardening behavior of a dual-phase steel. Mater Sci Eng A. 2014;594:178–188. doi: 10.1016/j.msea.2013.11.034
  • Tomota Y. Effects of morphology and strength of martensite on cyclic deformation behaviour in dual-phase steels. Mater Sci Technol. 1987;3(6):415–421. doi: 10.1179/mst.1987.3.6.415
  • Park K, Nishiyama M, Nakada N, et al. Effect of the martensite distribution on the strain hardening and ductile fracture behaviors in dual-phase steel. Mater Sci Eng A. 2014;604:135–141. doi: 10.1016/j.msea.2014.02.058
  • Wycliffe P, Purdy GR, Embury JD. Austenite grain growth during intercritical annealing of ternary and quaternary dual phase steels. In: Kot RA, Bramfitt BL, editors. Fundamentals of dual phase steels. Warrendale, PA: Metallurgical Society of AIME; 1981. p. 59–83.
  • Wycliffe PA, Purdy GR, Embury JD. Growth of austenite in the intercritical annealing of Fe-C-Mn dual phase steels. Can Metall Quarter. 1981;20(3):339–350. doi: 10.1179/cmq.1981.20.3.339
  • Steven W, Haynes AG. The temperature formation of martensite and bainite in low-alloy steels, some effects of chemical composition. J Iron Steel Inst. 1956;183:349–359.
  • Andrews KW. Empirical formulae for the calculation of some transformation temperatures. J Iron Steel Inst. 1965;203:721–727.
  • ASTM International. Standard test method for determining volume fraction by systematic manual point count. Standard No. E562:2011.
  • ASTM International. Standard test methods for determining average grain size. Standard No. E112:2013.
  • ASTM International. Standard test methods for tension testing of metallic materials (metric). Standard No. E8M:2004.
  • Paruz H, Edmonds DV. The strain hardening behaviour of dual-phase steel. Mater Sci Eng A. 1989;117:67–74. doi: 10.1016/0921-5093(89)90087-7
  • Sachdev AK. Effect of retained austenite on the yielding and deformation behavior of a dual phase steel. Acta Metall. 1983;31(12):2037–2042. doi: 10.1016/0001-6160(83)90021-4
  • Estrin Y, Mecking H. A unified phenomenological description of work hardening and creep based on one-parameter models. Acta Metall. 1984;32(1):57–70. doi: 10.1016/0001-6160(84)90202-5
  • Kocks UF, Mecking H. Physics and phenomenology of strain hardening: the FCC case. Prog Mater Sci. 2003;48(3):171–273. doi: 10.1016/S0079-6425(02)00003-8
  • Mecking H, Kocks UF. Kinetics of flow and strain-hardening. Acta Metall. 1981;29(11):865–1875. doi: 10.1016/0001-6160(81)90112-7
  • Cribb WR, Rigsbee JM. Work-hardening behavior and its relationship to the microstructure and mechanical properties of dual-phase steels. In: Kot RA, Morris JW, editors. Structure and properties of dual phase steels. Warrendale, PA: Metallurgical Society of AIME; 1979. p. 91–117.
  • Tomita Y, Okabayashi K. Tensile stress-strain analysis of cold worked metals and steels and dual-phase steels. Metall Mater Trans A. 1985;16(5):865–872. doi: 10.1007/BF02814837
  • Seyedrezai H. Thermo-mechanical processing of dual-phase steels and its effects on the work hardening behaviour [dissertation]. Kingston: Queen’s University; 2014.
  • Matlock DK, Krauss G, Ramos LF, et al. A correlation of processing variables with deformation behavior of dual-phase steels. In: Kot RA, Morris JW, editors. Structure and properties of dual phase steels. Warrendale, PA: Metallurgical Society of AIME; 1979. p. 62–90.
  • Calcagnotto M, Ponge D, Demir E, et al. Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD. Mater Sci Eng A. 2010;527(10):2738–2746. doi: 10.1016/j.msea.2010.01.004
  • Seyedrezai H, Boyd JD, Pilkey AK. Effect of microstructure on the back stress contribution to work hardening in dual-phase steel sheet. In preparation. 2017.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.