Publication Cover
Canadian Metallurgical Quarterly
The Canadian Journal of Metallurgy and Materials Science
Volume 59, 2020 - Issue 3
253
Views
3
CrossRef citations to date
0
Altmetric
Materials Processing and Characterization

An investigation on cold, warm and hot deformation behaviour of Al 2024 alloy under as-received, solution heat treated, peak aged and over aged conditions

& ORCID Icon
Pages 297-305 | Received 02 Apr 2019, Accepted 16 Apr 2020, Published online: 14 May 2020

References

  • Alexopoulos ND, Velonaki Z, Stergiou CI, et al. Effect of ageing on precipitation kinetics, tensile and work hardening, behavior of Al-Cu-Mg (2024) alloy. Mater Sci Eng A. 2017;700:457–467. doi: 10.1016/j.msea.2017.05.090
  • Lin YC, Xia YC, Jiang YQ, et al. Precipitation hardening of 2024-T3 aluminum alloy during creep aging. Mater Sci Eng A. 2013;565:420–429. doi: 10.1016/j.msea.2012.12.058
  • Styles MJ, Hutchinson CR, Chen Y, et al. The coexistence of two S (Al2CuMg) phases in Al–Cu–Mg alloys. Acta Mater. 2012;60:6940–6951. doi: 10.1016/j.actamat.2012.08.044
  • Novelo-Peralta O, Figueroa IA, Lara-Rodríguez G, et al. New evidence on the nature of the metas S″-phase on Al–Cu–Mg alloys. Mater Chem Phys. 2011;130:431–436. doi: 10.1016/j.matchemphys.2011.07.004
  • Kovarik L, Mills MJ. Ab initio analysis of Guinier-Preston-Bagaryatsky zone nucleation in Al-Cu-Mg alloys. Acta Mater. 2012;60:3861–3872. doi: 10.1016/j.actamat.2012.03.044
  • Bagaryatsky YA. Structural changes on aging Al-Cu-Mg alloys. Dokl Akad SSSR. 1952;87:397–559.
  • Buchheit RG, Grant RP, Hlava PF, et al. Local dissolution phenomena associated with S phase (Al2CuMg) particles in aluminum alloy 2024-T3. J Electrochem Soc. 1997;144:2621–2628. doi: 10.1149/1.1837874
  • Mondolfo LF. Aluminum alloys – structure and properties. London: Butterworth; 1976.
  • Ringer SP, Hono K, Polmear IJ, et al. Nucleation of precipitates in aged Al-Cu-Mg-(Ag) alloys with high Cu:Mg ratios. Acta Mater. 1996;44:1883–1898. doi: 10.1016/1359-6454(95)00314-2
  • Ringer SP, Caraher SK, Polmear IJ. Response to comments on cluster hardening in an aged Al-Cu-Mg alloy. Scr Mater. 1998;39:1559–1567. doi: 10.1016/S1359-6462(98)00364-9
  • Seidt JD, Gilat A. Plastic deformation of 2024-T351 aluminum plate over a wide range of loading conditions. Int J of Solids Struc. 2013;50:1781–1790. doi: 10.1016/j.ijsolstr.2013.02.006
  • Ebrahimia GR, Ezatpour HR. Effect of precipitation on the warm deformation behavior of AA2024 alloy. Mater Sci Eng A. 2017;681:10–17. doi: 10.1016/j.msea.2016.11.015
  • El-Danaf EA, AlMajid AA, Soliman MS. Hot deformation of AA 6082-T4 aluminum alloy. J Mater Sci. 2008;43:6324–6330. doi: 10.1007/s10853-008-2895-4
  • Zhang H, Li L, Yuan D, et al. Hot deformation behavior of the new Al-Mg-Si-Cu aluminum alloy during compression at elevated temperatures. Mater Charact. 2007;58:168–173. doi: 10.1016/j.matchar.2006.04.012
  • Zhang H, Jın N, Chen J. Hot deformation behaviour of Al-Zn-Mg-Cu-Zr aluminium alloys during compression at elevated temperature. Trans Non Ferrous Met Soc China. 2011;21:437–442. doi: 10.1016/S1003-6326(11)60733-4
  • Dongre RD, Salunkhe S. Study of effect of deformation temperature on 6061 aluminium alloy by thermo mechanical simulation. Glob J Res Eng Mech Mech Eng. 2014;14:45–48.
  • Zhao D, Lampman S. Hot tension and compression testing. In: Mechanical testing. ASM handbook. Vol. 8. Materials Park, OH: ASM International; 2000. p. 152–163.
  • Ashby MF, Jones DRH. Engineering materials 2: an introduction to microstructures, processing and design. Oxford, UK: Elsevier; 1994.
  • Martin JW. Precipitation hardening. 2nd ed. Oxford: Butterworth-Heinemann; 1998.
  • Fan X, He Z, Yuan S, et al. Investigation on strengthening of 6A02 aluminum alloy sheet in hot forming-quenching integrated process with warm forming-dies. Mater Sci Eng A. 2013;587:221–227. doi: 10.1016/j.msea.2013.08.059
  • Zhang B, Baker TN. Effect of the heat treatment on the hot deformation behaviour of AA6082 alloy. J Mater Process Technol. 2004;153–154:881–885. doi: 10.1016/j.jmatprotec.2004.04.091
  • Polmear I. Light alloys: metallurgy of the light alloys. 3rd ed. Metallurgy and materials science. London: Arnold; 1995.
  • Semiatin SL, Jonas JJ. Formability and workability of metals: plastic instability and flow localization. Metals Park (OH): American Society for Metals; 1984.
  • Birol Y. Effect of cooling rate on precipitation during homogenization cooling in an excess silicon AlMgSi alloy. Mater Charac. 2012;73:37–42. doi: 10.1016/j.matchar.2012.07.015
  • Benallal A, Berstad T, Borvik T, et al. Dynamic strain aging and related instabilities: experimental, theoretical and numerical aspects. Eur J Mech A/Solids. 2006;25:397–424. doi: 10.1016/j.euromechsol.2005.10.007
  • Chatterjee A, Sarkar A, Barat P, et al. Character of the deformation bands in the (A plus B) regime of the Portevin-Le Chatelier effect in Al–2.5%Mg alloy. Mater Sci Eng A. 2009;508:156–160. doi: 10.1016/j.msea.2008.12.030
  • Karlsen W, Ivanchenko M, Ehrnsten U, et al. Microstructural manifestation of dynamic strain ageing in AISI 316 stainless steel. J Nuclear Mater. 2009;395:156–161. doi: 10.1016/j.jnucmat.2009.10.047
  • Rodriguez P. Serrated plastic flow. Bulletin of Mater Sci. 1984;6:653–663. doi: 10.1007/BF02743993
  • Van Den Beukel A. Theory of the effect of dynamic strain ageing on mechanical properties. Phys Status Solidi A. 1975;30:197–206. doi: 10.1002/pssa.2210300120
  • Gündüz S. Dynamic strain ageing effects in niobium microalloyed steel. Ironmaking Steelmaking. 2002;29(5):341–346. doi: 10.1179/030192302225004575
  • Hu Q, Zhang QC, Cao PT, et al. Thermal analyses and simulations of the type A and type B Portevin-Le Chatelier effects in an Al-Mg alloy. Acta Mater. 2012;60:1647–1657. doi: 10.1016/j.actamat.2011.12.003
  • Zhang QC, Jiang ZY, Jiang HF, et al. On the propagation and pulsation of Portevin-Le Chatelier deformation bands: An experimental study with digital speckle pattern metrology. Int J Plasticity. 2005;21:2150–2173. doi: 10.1016/j.ijplas.2005.03.017
  • Tian N, Wang G, Zhou Y, et al. Study of the Portevin-Le Chatelier (PLC) characteristics of a 5083 aluminum alloy sheet in two heat treatment states. Materials (Basel). 2018;11(9):1533–1540. doi: 10.3390/ma11091533
  • Halim H, Wilkinson DS, Marek N. The Portevin–Le Chatelier (PLC) effect and shear band formation in an AA5754 alloy. Acta Mater. 2007;55:4151–4160. doi: 10.1016/j.actamat.2007.03.007
  • Steel: a handbook for materials research and engineering. Düsseldorf: Verein Deutscher Eisenhüttenleute; 1992.
  • Gündüz S, Kaçar R. Strengthening of 6063 aluminium alloy by strain ageing. Kovove Mater. 2008;46:345–350.
  • Cheng S, Zhao YH, Zhu YT, et al. Optimizing the strength and ductility of fine structured 2024 Al alloy by nano-precipitation. Acta Mater. 2007;55:5822–5832. doi: 10.1016/j.actamat.2007.06.043
  • Wang SC, Starink MJ. Precipitates and intermetallic phases in precipitation hardening Al–Cu–Mg–(Li) based alloys. Int Mater Rev. 2005;50:193–215. doi: 10.1179/174328005X14357

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.