Publication Cover
Canadian Metallurgical Quarterly
The Canadian Journal of Metallurgy and Materials Science
Volume 61, 2022 - Issue 1
189
Views
6
CrossRef citations to date
0
Altmetric
Chemical and Extractive Metallurgy - Pyrometallurgy

Consequence of natural gas injection in blast furnace: a critical appraisal using a thermodynamic and evolutionary computation approach

, , &
Pages 1-13 | Received 06 Mar 2020, Accepted 05 Dec 2021, Published online: 16 Dec 2021

References

  • Grerdes M, Chaigneau I, Lingiardi J, et al. Modern blast furnace iron making: an introduction. Amsterdam: IOS Press BV; 2015.
  • Ghosh A, Chatterjee A. Iron making and steelmaking: theory and practice. New Delhi: PHI Learning Pvt. Ltd.; 2008.
  • Hooey L, Tobiesen A, et al. Techno-economic study of an integrated steelworks equipped with oxygen blast furnace and CO2 capture. Energy Proc. 2013;37:7139–7151.
  • Kaliszewski I, Miroforidis J, Podkopaev D. Multiple criteria decision making and multiobjective optimisation-A toolbox. In: Price Camille C, editor. International workshop on intuitionistic fuzzy sets and generalised nets. Cham: Springer; 2016. p. 135–142.
  • Jha R, Sen PK, Chakraborti N. Multi objective genetic algorithm and genetic programming models for minimizing input carbon rates in a blast furnace compared with a conventional analytic approach. Steel Res Int. 2014;85(2):219–232.
  • Mondal DN, Sarangi K, Pettersson F, et al. Cu―Zn separation by supported liquid membrane analyzed through multi-objective genetic algorithms. Hydrometallurgy. 2011;107(3-4):112–123.
  • Mitra T, Helle M, Pettersson F, et al. Multi objective optimisation of top gas recycling conditions in the blast furnace by genetic algorithms. Mater Manuf Processes. 2011;26(3):475–480.
  • Pettersson F, Saxén H, Deb K. Genetic algorithm based multicriteria optimisation of iron making in blast furnace. Mater Manuf Processes. 2009;24:343–349.
  • Chakraborti N. Strategies for evolutionary data driven modeling in chemical and metallurgical systems, applications of metaheuristics in process engineering. Cham: Springer; 2014.
  • Hooey PL, Bodén A, Wang C, et al. Design and application of a spreadsheet-based model of the blast furnace factory. ISIJ Int. 2010;50(7):924–930.
  • Sahu RK, Roy SK, Sen PK. Applicability of top gas recycle blast furnace with downstream integration and sequestration in an integrated steel plant. Steel Res Int. 2015;86(5):502–516.
  • Peacey JG, Davenport WG. The iron blast furnace: theory and practice. Amsterdam: Pergamon Press, Elsevier; 2016.
  • Hassoun MH. Fundamentals of artificial neural networks. Cambridge: MIT Press; 1995.
  • Coello-Coello CA, Van Veldhuizen DA, Lamont GB. Evolutionary algorithm for solving multi objective problems. New York: Kluwer Academic Publishers; 2002.
  • Hykin SS. Neural networks and learning machines. Holland: Prentice-Hall; 2008.
  • Mitra T, Pettersson F, Saxén H, et al. Blast furnace charging optimisation using multi-objective evolutionary and genetic algorithms. Mater Manuf Processes. 2017;32(10):1179–1188.
  • Mitra T, Saxén H. Evolution of charging programs for achieving required gas temperature profile in a blast furnace. Mater Manuf Processes. 2014;30:474–487.
  • Chakraborti N. Evolutionary data-driven modeling. In: Rajan Krishna, editor. Informatics for materials science and engineering. Amsterdam: Butterworth-Heinemann; 2013. p. 71–95.
  • Mahanta BK, Chakraborti N. Evolutionary data driven modeling and multi objective optimisation of noisy data set in blast furnace iron making process. Steel Res Int. 2018;89:1–11.
  • Giri BK, Pettersson F, et al. Genetic programming evolved through bi objective algorithms applied to a blast furnace. Mater Manuf Processes. 2013;28:776–882.
  • KimemeTM. www.kimeme.com, 2014.
  • Iacca G, Mininno E. Introducing kimeme, a novel platform for multi-disciplinary multi-objective optimisation). Initalian workshop on artificial life and evolutionary computation, Springer, Cham, 2015, 40-52.
  • Chugh T, Jin Y, Miettinen K, et al. A surrogate assisted reference vector guided evolutionary algorithm for computationally expensive many objective optimisation. IEEE Trans Evol. 2016;22(1):129–142.
  • Cheng R, Jin Y, et al. A reference vector guided evolutionary algorithm for many-objective optimization. IEEE Trans Evol Comput. 2016;20(5):773–791.
  • Bandyopadhyay S, Saha S, et al. A simulated annealing-based multiobjective optimization algorithm: AMOSA. IEEE Trans Evol Comput. 2008;12(3):269–283.
  • Li H, Zhang Q. Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II. IEEE Trans Evol Comput. 2008;13(2):284–302.
  • Coello CC, Lechuga MS. MOPSO: A proposal for multiple objective particle swarm optimization. IEEE, In proceedings of the 2002 congress on evolutionary computation. CEC'02 (Cat. No. 02TH8600) 2002, 2:1051-1056.
  • Mezura-Montes E, Reyes-Sierra M, Coello CA. Multi-objective optimization using differential evolution: a survey of the state-of-the-art. In: Chakraborty UK, editor. Advances in differential evolution. Berlin, Heidelberg: Springer; 2008. p. 173–196.
  • Zitzler E, Laumanns M, Thiele L. SPEA2: Improving the strength Pareto evolutionary algorithm. TIK-report, 2001, 103.
  • Li M, Zhen L, Yao X. How to read many objective solutions sets in parallel co-ordinates. UK: School of Computer Science, University of Birmingham; 2017.
  • Mahanta BK, Chakraborti N. Tri-objective optimization of noisy dataset in blast furnace iron-making process using evolutionary algorithms. Mater Manuf Processes. 2020;35(6):677–686.
  • Zhaib X, Chen M, Lu W. Fuel ratio optimization of blast furnace based on data mining. ISIJ Int. 2020;60(11):2471–2476.
  • Chowdhury S, Chakraborti N, Sen PK. Energy optimization studies for integrated steel plant employing diverse steel-making route: models and evolutionary algorithms-based approach. Miner Process Extr Metall Rev. 2021;42(6):355–366.
  • Li Y, Li H, et al. Data and knowledge driven approach for burden surface optimization in blast furnace. Comput Electr Eng. 2021;92:107–191.
  • Mahanta BK, Chakraborti N. Evolutionary data driven modelling and many objective optimization of nonlinear noisy data in the blast furnace iron making process. Comput Methods Mater Sci. 2021;31(3). doi:https://doi.org/10.7494/cmms.2021.3.0733.
  • Ghosh DP, Sengupta B, Maitra SK. Hearth monitoring of blast furnace using finite element analysis and artificial intelligence. In: Adhikar Sondipon, Dutta Anjan, Choudhury Satyabrata, editors. Advances in structural technologies. Singapore: Springer; 2021. p. 393–406.
  • Mahanta BK, Jha R, Chakraborti N. Data-Driven optimization of blast furnace iron making process using evolutionary deep learning. In: Datta Shbhabrata, Davim J. Paulo, editors. Machine learning in industry. Cham: Springer; 2022. p. 47–81.
  • Chakraborti N. Data-driven evolutionary modeling in materials technology. New York: CRC Press; 2022.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.