Publication Cover
Canadian Metallurgical Quarterly
The Canadian Journal of Metallurgy and Materials Science
Volume 61, 2022 - Issue 1
263
Views
4
CrossRef citations to date
0
Altmetric
Mineral Processing

Mine-to-smelter integration framework for regional development of porphyry copper deposits within the Chilean context

, , , , &
Pages 48-62 | Received 14 May 2021, Accepted 05 Dec 2021, Published online: 22 Dec 2021

References

  • Sillitoe RH, Perello J. Andean copper province: tectonomagmatic settings, deposit types, metallogeny, exploration, and discovery. In: JW Hedenquist, JFH Thompson, RJ Goldfarb, etal, editors. Economic geology 100th anniversary volume. Littleton, Colorado, USA: Society of Economic Geologists; 2005. p. 845–892.
  • Seedorff E, Dilles JH, Proffett JM, et al. Porphyry deposits: characteristics and origin of hypogene features. In: JW Hedenquist, JFH Thompson, RJ Goldfarb, etal, editors. Economic geology 100th anniversary volume. Littleton, Colorado, USA: Society of Economic Geologists; 2005. p. 251–298.
  • Sillitoe RH. (1995). Exploration of porphyry copper lithocaps. Proceedings of the Australasian Institute of Mining and Metallurgy Pacific Rim Congress (1995), Auckland, New Zealand. p. 527–532.
  • Sillitoe RH. Gold-rich porphyry deposits: descriptive and genetic models and their role in exploration and discovery. Rev Econ Geol. 2000;13:315–345.
  • Baker MS, Buteyn SD, Freeman PA, et al. (2017). Compilation of geospatial data for the mineral industries and related infrastructure of Latin America and the Caribbean: U.S. Geological Survey Open-File Report 2017–1079 [Data set]. U.S. Geological Survey. DOI:https://doi.org/10.3133/ofr20171079.
  • Comisión Chilena del Cobre. (2017). Sulfuros primarios : desafíos y oportunidades (Registro Propiedad Intelectual No. 2833439). Ministerio de Mineria – Gobierno de Chile. https://www.cochilco.cl/ListadoTemtico/sulfurosprimarios_desafíosyoportunidades.pdf.
  • Perez K, Wilson R, Jeldres RI, et al. Environmental, economic and technological factors affecting Chilean copper smelters – a critical review. J Mater Res Technol. 2021;15(2021):213–225. DOI:https://doi.org/10.1016/j.jmrt.2021.08.007.
  • Nikolić IP, Milošević IM, Milijić NN, et al. Cleaner production and technical effectiveness: multi-criteria analysis of copper smelting facilities. J Clean Prod. 2019;215:423–432.
  • Tabelin CB, Park I, Phengsaart T, et al. Copper and critical metals production from porphyry ores and E-wastes: a review of resource availability, processing/recycling challenges, socio-environmental aspects, and sustainability issues. Resour Conserv Recycl. 2021;170(2021):1–35. DOI:https://doi.org/10.1016/j.resconrec.2021.105610.
  • World Bank Group. Minerals for climate action: the mineral intensity of the clean energy transition. Washington (DC): The World Bank Group; 2020.
  • Forti V, Baldé CP, Kuehr R, et al. Quantities, flows, and their circular economy potential. Bonn: United Nations University (UNU); 2020.
  • Phengsaart T, Ito M, Azuma A, et al. Jig separation of crushed plastics: the effects of particle geometry on separation efficiency. J Mater Cycles Waste Manage. 2020;22(3):787–800.
  • Navarra A, Alvarez M, Rojas K, et al. Concentrator operational modes in response to geological variation. Miner Eng. 2019;134(1):356–364.
  • Saldaña M, Toro N, Castillo J, et al. Optimization of the heap leaching process through changes in modes of operation and discrete event simulation. Minerals. 2019;9(7):421.
  • Wilson R, Toro N, Naranjo O, et al. Integration of geostatistical modeling into discrete event simulation for development of tailings dam retreatment applications. Miner Eng. 2021a;164(2021):106814. DOI:https://doi.org/10.1016/j.mineng.2021.106814.
  • Navarra A, Wilson R, Parra R, et al. Quantitative methods to support data acquisition modernization within copper smelters. Processes. 2020;8(11):1478. DOI:https://doi.org/10.3390/pr8111478.
  • Price T, Harris C, Hills S, et al. (2009). Peirce-Smith converting: Another 100 years? Proceedings of the International Peirce-Smith Converting Centennial Symposium (TMS Annual Meeting), San Francisco, USA. p. 181–197.
  • Watt L, Kapusta J. (2019). The 2019 copper smelting survey. Proceedings of the Copper 2019 Conference (Phillip Mackey Honorary Symposium), Vancouver, Canada.
  • Kordosky G. Copper recovery using leach/solvent extraction/electrowinning technology: forty years of innovation, 2.2 million tonnes of copper annually. J S Afr Inst Min Metall. 2002;102(8):445–450.
  • Ochromowicz K, Chmielewski T. Solvent extraction in hydrometallurgical processing of Polish copper concentrates. Physicochem Probl Miner Process. 2011;46(2011):207–218.
  • Dreisinger D. Copper leaching from primary sulfides: options for biological and chemical extraction of copper. Hydrometallurgy. 2006;83:10–20.
  • Hyvarinen O, Hamalainen M. HydroCopperTM – A new technology producing copper directly from concentrate. Hydrometallurgy. 2005;77:61–65.
  • Glencore Technology. (2018). First chalcopyrite copper concentrate leaching using Albion ProcessTM technology [PowerPoint presentation]. https://www.albionprocess.com/en/downloads/LatestNews/Hydroprocess%20Glencore%20Technology%202018%20-%20Preso.pdf.
  • Defreyne J, Brace T, Miller C, et al. (2008). Commissioning UHC: A Vale copper refinery based on CESL technology. In Young CA, Taylor PR, Corby CG, & Choi Y., editors. Hydrometallurgy 2008: Proceedings of the 6th International Symposium. Society for Mining, Metallurgy, and Exploration (SME). p. 357–366.
  • Mayhew K, Mean R, Miller C, et al. (2011). Teck – Aurubis: an integrated mine to metal approach to develop high arsenic copper deposits using the CESL process. Proceedings of the Perumin 2011 Conference, Arequipa, Peru.
  • Schlesinger M, King M, Sole K, et al. (2011). Batch converting of copper matte. In Extractive metallurgy of copper. p. 127–153.
  • Mackey PJ. (2013). Copper smelting technologies in 2013 and beyond. Proceedings of the Copper 2013 Conference, Santiago, Chile.
  • Taskinen P, Akdogan G, Kojo I, et al. Matte converting in copper smelting. Min Proc Extract Metall. 2018;128(1):1–16. DOI:https://doi.org/10.1080/25726641.2018.1514774.
  • Wang S, Davenport W, Siegmund A, et al. (2016). Copper smelting: 2016 world copper smelter data. Proceedings of the Copper 2016 Conference, Tokyo, Japan. p. 332–339.
  • Prevost Y, Bedard M, Levac C. (2013). First 15 years of operation of the Noranda Converter. Proceedings of Materials Science & Technology (MS&T) Conference and Exhibition, Montréal, Canada.
  • Hanniala P, Mäkinen T, Kytö M. (1991). Flash technology for converting. In Vereecken J., editor. EMC ‘91: Non-Ferrous Metallurgy – Present and Future. p. 191–203. DOI:https://doi.org/10.1007/978-94-011-3684-6_20.
  • Kojo I, Storch H. (2006). Copper production with Outokumpu flash smelting: An update. In Kongoli F., editor. Proceedings of Advanced Processing of Metals and Materials (Sohn International Symposium) – Volume 8: International Symposium on Sulfide Smelting, San Diego, USA. p. 225–238.
  • Alvear GRF, Nikolic S, Mackey PJ. ISASMELTTM for the recycling of E-scrap and copper in the U.S. case study example of a new compact recycling plant. JOM. 2014;66(5):823–832. DOI:https://doi.org/10.1007/s11837-014-0905-3.
  • Edwards JS, Alvear GRF. (2007). Converting using ISASMELTTM technology. In Warner AEM, Newman CJ, Vahed A. Proceedings of the Copper 2007 Conference: The Carlos Diaz Symposium on Pyrometallurgy – Volume III (Book 2), Toronto, Canada. p. 17–28.
  • Nikolic S, Edwards JS, Burrows AS, et al. (2009). ISACONVERTTM – TSL Continuous Copper Converting Update. In Kapusta J & Warner T., editors, Proceedings of the International Peirce–Smith Converting Centennial (TMS Annual Meeting), San Francisco, USA. p. 407–414.
  • Glencore Technology. (2021). Copper/Nickel smelter installations [Fact sheet]. https://www.isasmelt.com/en/installations/Documents/isasmelt-Installations.pdf.
  • Navarra A, Kuan SH, Parra R, et al. (2016). Debottlenecking of conventional copper smelters. Proceedings of the International Conference on Industrial Engineering and Operations Management, Kuala Lumpur, Malaysia. p. 2395–2406.
  • Kojo I, Lahtinen M, Miettinen E. Flash converting – sustainable technology now and in the future. In: J Kapusta, T Warner, editors. International Peirce-Smith Converting centennial. Warrendale, Pennsylvania, USA: TMS (The Minerals, Metals & Materials Society); 2009. p. 383–395.
  • Coursol P, Mackey PJ, Diaz C. (2010). Energy consumption in copper sulphide smelting. Proceedings of the Copper 2010 Conference, Hamburg, Germany. p. 649–668.
  • Olper M, Maccagni M, Matusewicz R, et al. Simplified copper production from primary concentrates: the direct electrorefining of white metal/copper matte. Can Metall Q. 2008;47(3):369–376.
  • Flores GA, Risopatron C, Pease J. Processing of complex materials in the copper industry: challenges and opportunities ahead. JOM. 2020;72:3447–3461. DOI:https://doi.org/10.1007/s11837-020-04255-9.
  • Brook Hunt. (2010). Global copper concentrate & blister/anode markets to 2022 (2010 Edition). Wood Mackenzie Ltd.
  • Mean JR. (2011). Triple bottom line thinking for a high arsenic bearing copper-gold project in northern Peru: assessing the viability of an integrated mine, mill, and hydrometallurgical refinery [Unpublished master’s thesis]. Simon Fraser University, Burnaby, British Columbia.
  • Chen C, Zhang L, Jahanshahi S. Thermodynamic modeling of arsenic in copper smelting processes. Metall Mater Trans B. 2010;41(6):1175–1185.
  • Riveros PA, Dutrizac JE, Spencer P. Arsenic disposal practices in the metallurgical industry. Can Metall Q. 2001;40(4):395–420.
  • Wilkomirsky I, Parra R, Parada F, et al. Partial roasting of high-arsenic copper concentrates. Metall Mater Trans B. 2020;51:2030–2038. DOI:https://doi.org/10.1007/s11663-020-01893-x.
  • Caballero CD, Etcheverry JC, Ortiz JB, et al. (2016). Improvements to the operation and design of the fluidized bed roaster – ministro hales division. Proceedings of the Copper 2016 Conference, Kobe, Japan. p. 921–932.
  • Hedstrom L, Holmstrom A, Hammerschmidt J, et al. (2016). Processing the arsenic rich MMH copper concentrate into a high quality calcine by fluidized bed roasting. Proceedings of the XXVIII International Mineral Processing Congress (IMPC 2016), Quebec City, Canada. p. 2344–2353.
  • Filippou D, Demopoulos GP. Arsenic immobilization by controlled scorodite precipitation. JOM. 1997;49:52–55. DOI:https://doi.org/10.1007/s11837-997-0034-3.
  • Nazari A, Radzinski R, Ghahreman A. Review of arsenic metallurgy: treatment of arsenical minerals and the immobilization of arsenic. Hydrometallurgy. 2016;174(2017):258–281. DOI:https://doi.org/10.1016/j.hydromet.2016.10.011.
  • Glencore. (2015). ISASMELTTM high productivity clean smelting [brochure]. https://www.isasmelt.com/en/download/Brochures/isasmeltbrochure.pdf.
  • Bakker M, Alvear G, Kreuh M. (2009). ). ISASMELT™ TSL – Making a splash for nickel. In Liu J, Peacey J, Barati M, editors, Proceedings of the 48th Conference of Metallurgists – Pyrometallurgy of Nickel and Cobalt Symposium, Sudbury, Canada. p. 181–193.
  • Burrows A, Partington P, Sakala J, et al. (2012). ISASMELTTM at Mufulira – increased flexibility on the Zambian copperbelt. In F. Kongoli (Ed.), Proceedings of the Fray International Symposium – Metals and Materials Processing in a Clean Environment, Volume 1: Sustainable Non-Ferrous Smelting in 21st Century, Cancun, Mexico. p. 217–226.
  • Navarra A, Marambio H, Oyarzun F, et al. System dynamics and discrete event simulation of copper smelters. Miner Metall Process. 2017;34(2):96–106.
  • Wilson R, Mercier PHJ, Patarachao B, et al. Partial least squares regression of oil sands processing variables within discrete event simulation digital twin. Minerals. 2021b;11(689):1–30.
  • Órdenes J, Wilson R, Peña-Graf F, et al. Incorporation of geometallurgical input into gold mining system simulation to control cyanide consumption. Minerals. 2021;11(1023):1–16.
  • Saldaña M, Neira P, Flores V, et al. Analysis of the dynamics of rougher cells on the basis of phenomenological models and discrete event simulation framework. Metals. 2021;11(1454):1–20.
  • Awuah-Offei K, Brown O, Askari-Nasab H. (2012). Improving truck-shovel energy efficiency through discrete event modeling. In Proceedings of the 2012 SME Annual Meeting and Exhibit, Seattle (WA), USA. p. 1–6.
  • Gbadam E, Awuah-Offei K, Frimpong S. (2015). Investigation into mine equipment subsystem availability & reliability data modeling using DES. In Bandopadhyay S., editor, Application of computers and operations research in the mineral industry, Englewood.
  • Greberg J, Salama A, Gustafson A, et al. Alternative process flow for underground mining operations: analysis of conceptual transport methods using discrete event simulation. Minerals. 2016;6(3):1–14.
  • Vagenas N. Applications of discrete-event simulation in Canadian mining operations in the nineties. Int J Surf Min Reclam Environ 1999;13(1):77–78.
  • Pamparana G, Kracht W, Haas J, et al. Integrating photovoltaic solar energy and a battery energy storage system to operate a semi-autogenous grinding mill. J Cleaner Prod 2017;165(1):273–280.
  • Koch P-H, Rosenkranz J. Sequential decision-making in mining and processing based on geometallurgical inputs. Miner Eng. 2020;149(106262):10.
  • Khan A, Asad MWA. A mathematical programming model for optimal cut-off grade policy in open pit mining operations with multiple processing streams. Int J Min Reclam Environ 2020;34(3):149–158.
  • Qaeze F, Guillaume R, Thierry C. (2015). A collaborative planning model to coordinate mining and smelting furnace. In Proceedings of the 16th Working Conference on Virtual Enterprises (PROVE), Albi, France. p. 557–565.
  • Pradenas L, Zúñiga J, Parada V. CODELCO, Chile programs its copper-smelting operations. INFORMS J Appl Anal. 2006;36(4):296–301.
  • Candente Copper Corp. (2019). Leverage with large resource and exploration upside [PowerPoint presentation]. https://candentecopper.com/site/assets/files/5575/2019-02-dnt-cp.pdf.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.