Publication Cover
Canadian Metallurgical Quarterly
The Canadian Journal of Metallurgy and Materials Science
Volume 62, 2023 - Issue 3
186
Views
2
CrossRef citations to date
0
Altmetric
Materials Processing, Characterization and Properties

Mechanical properties of plasma arc welded AISI304LN austenitic stainless steel at various temperatures

ORCID Icon, ORCID Icon & ORCID Icon
Pages 457-471 | Received 02 Apr 2022, Accepted 14 Aug 2022, Published online: 30 Aug 2022

References

  • Monteiroa SN, Margemb FM, Candidoa VS, et al. High temperature plastic instability and dynamic strain aging in the tensile behavior of AISI 316 stainless steel. Mater Res. 2017;20:506–511.
  • Simmons WF, Van Echo JA. ASTM Data Series, Publication DS 5-51, West Conshohocken (formely STP 124); 1965.
  • Conway JB, Berling JT, Stentz RH, et al. General electric technical report. GEMP 686, Fairfield; 1969.
  • Wray PJ, Richmond O. Experimental approach to a theory of plasticity at elevated temperatures. J Appl Phys. 1968;39:5754–5761.
  • Michel DJ, Moteff J, Lovell AJ. Substructure of type 316 stainless steel deformed in slow tension at temperatures between 21° and 816°C. Acta Metall. 1973;21:1269–1277.
  • Ethiraj N, Senthilkumar VS. Experimental investigation on warm deep drawing of stainless steel AISI 304. Appl Mech Mater. 2010;26-28:436–442.
  • Van den Boogaard AH, Huetink J. Simulation of aluminium sheet forming at elevated temperatures. J Comput Methods Appl Mech Eng. 2006;195:6691–6709.
  • Shinagawa K, Mori K, Osakada K. Finite element simulation of deep drawing of stainless steel sheet with deformation-induced transformation. J Mater Process Technol. 1991;27:301–310.
  • Takuda H, Mori K, Masachika T, et al. Finite element analysis of the formability of an austenitic stainless steel sheet in warm deep drawing. J Mater Process Technol. 2003;143-144:242–248.
  • Kang YH, Kang YK, Park JW, et al. Tool temperature control to increase the deep drawability of aluminum 1050 sheet. Int J Mach Tools Manufact. 2001;41:1283–1294.
  • Hussaini SM, Singh SK, Gupta AK. Formability and fracture studies of austenitic stainless steel 316 at different temperatures. J King Saud Univ Eng Sci. 2014;26:184–190.
  • Muhamed GA, Gündüz S, Erden MA, et al. Dynamic strain aging behaviour in AISI 316L austenitic stainless steel under as-received and as-welded conditions. Metals (Basel). 2017;7:362.
  • Kornokar K, Nematzadeh F, Mostaan H, et al. Influence of heat input on microstructure and mechanical properties of Gas tungsten arc welded HSLA S500MC steel joints. Metals (Basel). 2022;12:565.
  • Ehrnsten U., Toivonen A., Ivanchenko M., et al. Proceedings of the EUROCORR 2004-European corrosion conference: long term prediction and modeling of corrosion, Paris, France; 2004. p. 12–16.
  • Wang DQ, Zhu ML, Xuan FZ. Correlation of local strain with microstructures around fusion zone of a Cr-Ni-Mo-V steel welded joint. Mater Sci Eng A. 2017;685:205–212.
  • Barnby JT. Effect of strain aging on the high-temperature tensile properties of an AISI 316 austenitic stainless steel. Iron Steel Inst. 1965;205:292–297.
  • Jenkins CJ, Smith GV. Serrated plastic flow in austenitic stainless steel(Serrated plastic flow in stable austenitic stainless steels based on Fe/Ni, showing strength dependence on C and/or Cr presence. 1969;245:2149.
  • Persson NG, Rohlin L. Scand J Met. 1973;2:49.
  • Neuenschwander M, Knobloch M, Fontana M. Elevated temperature mechanical properties of solid section structural steel. Constr Build Mater. 2017;149:186–201.
  • Lino Y, Nakahara M. Effect of high temperature plastic strain with dynamic strain ageing on sensitization of type 304 stainless steel. J Mater Sci. 1991;26:5904–5910.
  • Monteiroa SN, Pereiraa AC, Bragaa FO, et al. Relevance of dynamic strain aging under quasi-static tension on AISI 304 stainless steel. Mater Res. 2017;20:421–425.
  • Sun GS, Du LX, Hu J, et al. Low temperature superplastic-like deformation and fracture behavior of nano/ultrafine-grained metastable austenitic stainless steel Mater Des. 2017;117:20.
  • Chen SY, Wang L, Li WD, et al. Peierls barrier characteristic and anomalous strain hardening provoked by dynamic-strain-aging strengthening in a body-centered-cubic high-entropy alloy. Mater Res Lett. 2019;7(12):475–481.
  • Sánchez-Tovar R, Montañés MT, García-Antón J, et al. Corrosion behaviour of micro-plasma arc welded stainless steels in H3PO4 under flowing conditions at different temperatures. Corros Sci. 2011;53:4.
  • Lin CM, Lu CH. Effects of tempering temperature on microstructural evolution and mechanical properties of high-strength low-alloy D6AC plasma arc welds. Mater Sci Eng A. 2016;676:28–37.
  • Kumar S, Mahesh SK, Gupta AK. Prediction of mechanical properties of extra deep drawn steel in blue brittle region using Artificial Neural Network. Mater Des. 2010;31:5.
  • Desu RK, Krishnamurthy HN, Balu A, et al. Mechanical properties of austenitic stainless steel 304L and 316L at elevated temperatures. J Mater Res Technol. 2016;5:13–20.
  • Oliver WC, Pharr GM. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res. 1992;7:1564–1583.
  • Oliver WC, Pharr GM. Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J Mater Res. 2004;19:3–20.
  • Hollomon JH. Trans AIME. 1945;162:268–269.
  • Lee WS, Lin CF, Chen BT. Tensile properties and microstructural aspects of 304L stainless steel weldments as a function of strain rate and temperature. Proc IMechE Vol 219 Part C, J Mech Eng Sci. 2005;219:439–451.
  • Wang W, Liu B, Kodur V. Effect of temperature on strength and elastic modulus of high-strength steel. J Mater Civ Eng. 2013;25:174–182.
  • Gündüz S. Dynamic strain aging effects in niobium microalloyed steel. Ironmak Steelmak. 2002;29:341–346.
  • Bayramin B. The graduate school of natural and applied sciences of Middle East Technical University [M.Sc. thesis]. Ankara; 2017. p. 25–26.
  • Mannan SL, Samuel KG, Rodriguez P. Dynamic Strain Ageing in Type 316 Stainless Steel. Trans Indian Inst Met. 1983;36:313–320.
  • Mohamed GA, The graduate school of natural and sciences of Karabük University [Ph.D. thesis]. Karabük; 2018, p. 44–48.
  • Rodriguez P. Serrated plastic flow. Bull Mater Sci. 1984;6:653–663.
  • Portevin A, Le Chatelier F. Sur un phenomene observe lors de l’essai de traction d’alliages en cours de transformation. Comptes Rendus de l’Academie des Sciences Paris. 1923;176:507–510.
  • Misra RDK, Challa VSA, Venkatsurya PKC, et al. Interplay between grain structure, deformation mechanisms and austenite stability in phase-reversion-induced nanograined/ultrafine-grained austenitic ferrous alloy. Acta Mater. 2015;84:339–348.
  • Armas AF, Bettin OR, Alvarez-Armas I, et al. Strain aging effects on the cyclic behavior of austenitic stainless steels. J Nucl Mater. 1988;155-157:644–649.
  • Peng K, Qian K, Chen W. Effect of dynamic strain aging on high temperature properties of austenitic stainless steel. Mater Sci Eng A. 2004;379:372–377.
  • Zhang JS. High temperature deformation and fracture of materials, woodhead publishing. Beijing: Science Press; 2010. p. 28.
  • Dieter GE. Mechanical metallurgy. McGraw-Hill Book Company; New York, London, 1961.
  • Smith G. Properties of metals at elevated temperatures. 3rd ed. New York: McGraw Hill Book Co; 1950.
  • Higgins RA. Engineering metallurgy. Part 1 applied physical metallurgy. 6th ed. Arnold a Member of the Hodder Headline Group; 1993. ISBN 034056830 5.
  • Kahraman N, Gülenç B, Akça H. Mechanical properties of welding of weldment on low carbon steel welded to austenitic stainless steel by arc welding method. Gazi Univer J Eng Archit. 2002;17:75–85.
  • Çetin MH, Korkmaz Ş, Elgaddafi KAB, et al. Investigation of Weldability of Austenitic Stainless Steel and Low Carbon Steel and Optimization of Welding Parameters. Düzce Univer J Sci Technol. 2018;6:1068–1081.
  • Kaçar R, Ertek Emre H, Nohutçu S. 5th International Mediterranean Science and Engineering Congress (IMSEC); 2020.
  • Marashi P, Pouranwari M, Abdollahian AS, et al. Microstructure and failure behavior of dissimilar resistance spot welds between low carbon galvanized and austenitic stainless steels. Mater Sci Eng A. 2008;480:175–180.
  • Yılmaz R, Türkyılmazoğlu A. 13th International Metallurgy and Materials Congress; 2006. p. 987–993.
  • Nkhoma RKC, Siyasiya WC, Stumpf WE. Hot workability of AISI 321 and AISI 304 austenitic stainless steels. J Alloys Compd. 2014;595:103–112.
  • Kahraman F, Kasman Ş, Kahraman AD, et al. El-Cezerî Fen ve Mühendislik Dergisi. 2017;1:64–71.
  • Mohamed GA, Gündüz S. 5th International Conference on Welding Technologies and Exhibition; 2018.
  • Kožuh S, Goji M, Kosec L. Mechanical properties and microstructure of austenitic stainless steel after welding and post-welded weat treatment. Kov Mater. 2009;47:253–262.
  • Padilha AF, Rios PR. Decomposition of austenite in austenitic stainless steels. ISIJ Int. 2002;42:325–327.
  • Padilha AF, Plaut RL, Rios PR. Annealing of cold-worked austenitic stainless steels. ISIJ Int (Japan). 2003;43:135–143.
  • Sourmail T. Precipitation in creep resistant austenitic stainless steels. Mater Sci Technol. 2001;17:1–14.
  • Lee J, Kim I, Kimura A. Application of small punch test to evaluate sigma-phase embrittlement of pressure vessel cladding material. J Nucl Sci Technol. 2003;40:664–671.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.