Publication Cover
Canadian Metallurgical Quarterly
The Canadian Journal of Metallurgy and Materials Science
Volume 63, 2024 - Issue 3
60
Views
0
CrossRef citations to date
0
Altmetric
Materials Processing, Characterization and Properties

Critical evaluation and thermodynamic CALPHAD reassessment of Cerium–Nickel system

, , &
Pages 741-750 | Received 10 Feb 2023, Accepted 26 Jun 2023, Published online: 05 Jul 2023

Reference

  • Cui J, Kramer M, Zhou L, et al. Current progress and future challenges in rare-earth-free permanent magnets. Acta Mater. 2018;158:118–137. doi:10.1016/j.actamat.2018.07.049
  • Coey JMD. Perspective and prospects for rare earth permanent magnets. Engineering. 2020;6(2):119–131. doi:10.1016/j.eng.2018.11.034
  • Jiang W, Chen Y, Hu M, et al. Rare earth-Mg-Ni-based alloys with superlattice structure for electrochemical hydrogen storage. J Alloys Compd 2021;887:161381), doi:10.1016/j.jallcom.2021.161381
  • Wu B, Zhang Y, Guo D, et al. Structure, magnetic properties and cryogenic magneto-caloric effect (MCE) in RE2FeAlO6 (RE = Gd, Dy, Ho) oxides. Ceram Int. 2021;47(5):6290), doi:10.1016/j.ceramint.2020.10.207
  • Raghu Ram N, Prakash M, Naresh U, et al. Review on magnetocaloric effect and materials. J. Supercond Novel Magnet. 2018;31:1971), doi:10.1007/s10948-014-2601-5
  • Zhang Y, Zhu J, Li S, et al. Magnetic properties and promising magnetocaloric performances in the antiferromagnetic GdFe2Si2 compound. Science China Mater. 2022;65:1345–1352. doi:10.1007/s40843-021-1967-5
  • Li L, Yan M. Recent progresses in exploring the rare earth based intermetallic compounds for cryogenic magnetic refrigeration. J Alloys Compd 2020;823:153810. doi:10.1016/j.jallcom.2020.153810
  • Hong L, Wang R, Zhang X. Effects of Nd on microstructure and mechanical properties of as-cast Mg-12Gd-2Zn-xNd-0.4Zr alloys with stacking faults. Int J Miner Metall Mater. 2022;29:1570–1577. doi:10.1007/s12613-021-2264-8
  • Fix M, Schneider R, Bensmann J, et al. Thermomagnetic control of spintronic THz emission enabled by ferrimagnets. Appl Phys Lett. 2020;116:012402. doi:10.1063/1.5132624
  • Korolev DV, Dvoretskaya EV, Koplak OV, et al. Magneto-optical properties and photoluminescence of (PrDy)(FeCo)B microwires. Phys Solid State. 2021;63:556. doi:10.1134/S1063783421040107
  • Gromov VI, Yakusheva NA, Vostrikov AV, et al. High strength structural steels for gas-turbine engine shafts. Phys Solid State. 2021;63:556), doi:10.1134/S1063783421040107
  • Wu F, Li Q, Chen L, et al. Use of Ce to reinforce the interface of Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode materials for lithium-ion batteries under high operating voltage. Chemsuschem. 2019;12(4):935), doi:10.1002/cssc.201802304
  • Liu Z. Computational thermodynamics and its applications. Acta Mater. 2020;200:745–792. doi:10.1016/j.actamat.2020.08.008
  • Kattner US. The calphad method and its role in material and process development. Tecnol Metal Mater Min. 2016;13(1):3), doi:10.4322/2176-1523.1059
  • Andersson JO, Helander T, Höglund L, et al. Thermo-Calc & DICTRA, computational tools for materials science. Calphad. 2002;26(2):273–312. doi:10.1016/S0364-5916(02)00037-8
  • Vogel R, Iandelli A, Rolla L. On the cerium–nickel, lanthanum–nickel, praseodymium–nickel, and cerium–cobalt systems. Z Metallkd. 1947;34:97), doi:10.1515/ijmr-1947-380401
  • Cromer DT, Olsen CE. The crystal structure of PuNi3 and CeNi3. Acta Crystallogr. 1959;12:689. doi:10.1107/S0365110X59002006
  • Cromer DT, Larson AC. The crystal structure of Ce2Ni7. Acta Crystallogr. 1959;12:855–859. doi:10.1107/S0365110X59002468
  • Roof RB, Larson AC, Cromer DT. The crystal structure of Ce7Ni3. Acta Crystallogr. 1961;14:1084–1087. doi:10.1107/S0365110X61003120
  • Gebhart JM, Etter DE, Tucker PA. Cerium-iron and cerium-nickel binary systems. In Proceeding of the Sixth Conference on Rare Earth Research; 1967. p. 452.
  • Olcese GL. Crystal structure and magnetic properties of some 7:3 binary phases between lanthanides and metals of the 8th group. J. Less-Common Met. 1973;33:71–81. doi:10.1016/0022-5088(73)90057-X
  • Qi G, Li Z, Itagaki K. High temperature phase relations in Ni–RE (RE = La, Ce, Pr, Nd) binary and ternary alloy systems. Mat Trans JIM. 1989;30:583–593. doi:10.2320/matertrans1989.30.583
  • Nash P, Tung CH. Phase diagrams of binary nickel alloys, 62. Ohio: ASM; 1991.
  • Duisemaliev UK. Solubility in nickel and mechanical properties of nickel–cerium alloys. Russ J Inorg Chem. 1964;9:417.
  • Gschneidner KA, Verkade ME. (1974). Selected cerium phase diagrams, document IS-RIC-7 28.
  • Kim DY, Ohtsuka M, Itagaki K. Study on reactive diffusion in Ni-RE (RE=Ce, Pr, Nd) binary alloys. Shigen-to-Sozai. 1994;110(2):95–101. doi:10.2473/shigentosozai.110.95
  • Xiong W, Du Y, Lu X, et al. Reassessment of the Ce–Ni binary system supported by key experiments and ab initio calculations. Intermetallics. 2007;15:1401–1408. doi:10.1016/j.intermet.2007.04.004
  • Mardani M, Fartushna I, Khvan A, et al. Experimental investigation of phase equilibria in the Ce-Fe-Ni system. J. Alloys Compds. 2019;781:524. doi:10.1016/j.jallcom.2018.12.093
  • Du Z, Yang L, Ling G. Thermodynamic assessment of the Ce–Ni system. J Alloys Compd. 2004;375:186–190. doi:10.1016/j.jallcom.2003.11.157
  • Palumbo M, Borzone G, Delsante S, et al. Thermodynamic analysis and assessment of the Ce–Ni system. Intermetallics. 2004;12:1367–1372. doi:10.1016/j.intermet.2004.04.035
  • Pisch A, Wang J, Jorda JL. Thermodynamic modelling of the Ce–Ni system. Int J Mat Res. 2006;97:737), doi:10.1515/ijmr-2006-0119
  • Ye H, Rong M, Yao Q, et al. Phase equilibria and thermodynamic properties in the RE-Ni (RE = rare earth metals) binary systems. J Mat Sci. 2023;58:1260–1292. doi:10.1007/s10853-022-08039-1
  • Colinet C, Pasturel A. A thermodynamic study of cerium behaviour in hexagonal CeNi5 compund. Phys Stat Sol. 1983;80:K75–K79. doi:10.1002/pssa.2210800164
  • Yamaguchi K, Kim DY, Ohtsuka M, et al. Heat content and heat of formation measurements of RNi5 ± x alloys (R ≡ La, Ce, Pr or Nd) and heat balance in a reduction-diffusion process. Alloy Compd. 1995;221:161–168. doi:10.1016/0925-8388(94)01422-1
  • Reddy BP, Babu R, Nagarajan K, et al. Enthalpies of formation of CeNi2 and CeNi5 by calorimetry. J Nucl Mat. 1997;247:235–239. doi:10.1016/S0022-3115(97)00072-X
  • Guo Q, Kleppa OJ. Standard enthalpies of formation of CeNi5 and of RENi (RE=Ce, Pr, Nd, Sm, Gd, Tb, Ho, Tm and Lu), determined by high-temperature direct synthesis calorimetry. J Alloys Compd. 1998;270:212–217. doi:10.1016/S0925-8388(98)00509-X
  • Niessen AK, de Boer FR, Boom R, et al. Model predictions for the enthalpy of formation of transition metal alloys II. Calphad. 1983;7:51–70. doi:10.1016/0364-5916(83)90030-5
  • Capelli R, Ferro R, Borsese A. A direct isoperibol aneroid calorimeter. Thermochim Acta. 1974;10:13–21. doi:10.1016/0040-6031(74)85018-5
  • Ferro R, Borzone G, Parodi N, et al. On the thermochemistry of the rare earth compounds with thep-block elements. J Phase Equilib. 1994;15:317–329. doi:10.1007/BF02669222
  • Cacciamani G, Borzone G, Ferro R. On a simple high temperature direct reaction calorimeter. J Alloys Compd. 1995;220:106–110. doi:10.1016/0925-8388(94)06024-X
  • Nikolaenko IV, Vlasova OV. Enthalpies of mixing nickel with cerium and cerium valence in melt. Rasplavy. 1992;4:79.
  • Sudavtsova VS, Gorobets YG, Batalin GI. Enthalpies of forming liquid binary alloys in the Ce–(Si, Ni. Cu) Systems. Rasplavy. 1988;2:79.
  • Ivanov MI, Berezutskii VV, Shevchenko MO, et al. Thermodynamic properties of Ce–Ni binary alloys. Powder Metall Met Ceramics. 2016;54:590–598. doi:10.1007/s11106-016-9752-9
  • Koskenmaki DC, Gschneidner KA. Handbook on the physics and chemistry of rare earths. Handb Phys Chem Rare Earths. 1978;1:337–377. doi:10.1016/S0168-1273(78)01008-9
  • Gschneider KA, Calderwood FW. Intra rare earth binary alloys: phase relationships, lattice parameters and systematics. In: KA Gschneider, L Eyring, editor. Handbook on the physics and chemistry of rare earths 8. Amsterdam: North-Holland Physics Publishing; 1986. p. 1–161. doi:10.1016/S0168-1273(86)08004-2
  • Walline RE, Wallace WE. Magnetic and structural characteristics of lanthanide-nickel compounds. J Chem Phys. 1964;41:1587–1591. doi:10.1063/1.1726127
  • Mansey RC, Raynor GV, Harris IR. Rare-earth intermediate phases VI. Pseudo-binary systems between cubic laves phases formed by rare-earth metals with iron, cobalt, nickel, aluminium and rhodium. J Less-Common Met. 1968;14:329–336. doi:10.1016/0022-5088(68)90038-6
  • Virkar AV, Raman A. Crystal structures of AB3 and A2B7 rare earth-nickel phases. J Less Common Met. 1969;18:59–66. doi:10.1016/0022-5088(69)90120-9
  • Buschow KHJ, Van Der Goot AS. The crystal structure of rare-earth nickel compounds of the type R2Ni7. Less CommonMet. 1970;22(4):419–428. doi:10.1016/0022-5088(70)90129-3
  • Lemaire R, Paccard D. Structures cristallines de composés intermétalliques entre le nickel et les métaux de terres rares ou l'yttrium. Bull Soc Franc Mineral Crist. 1969;92:9), doi:10.3406/bulmi.1969.6305
  • Dwight AE. Factors controlling the occurrence of Laves phases and AB5 compounds among transition elements. Trans. 1961;ASM53:479.
  • Olcese GL. Magnetic Behavior of Ce in its intermetallic compounds. Boll Scient Fac Chim Ind Bologna. 1966;24:165.
  • Massalski TB, et al. 1990. Binary alloy phase diagrams, 1–3, 2nd ed. Metals Park, OH.
  • Dinsdale AT. SGTE data for pure elements. Calphad. 1991;5; doi:10.1016/03645916(91)90030-N
  • Teichert GH, Gunda NSH, Rudraraju S, et al. A comparison of Redlich-Kister polynomial and cubic spline representations of the chemical potential in phase field computations. Computational Mater. Sci. 2017;128:127. doi:10.1016/j.commatsci.2016.11.024
  • Hillert M, Staffansson LI. The regular solution model for stoichiometric phases and ionic melts. Acta Chem Scand. 1970;24:3618–3626. doi:10.3891/acta.chem.scand.24-3618
  • Buschow KHJ. Intermetallic compounds of rare-earth and 3d transition metals. Rep Prog Phys. 1977;40:1179–1256. doi:10.1088/0034-4885/40/10/002
  • Perkins RH, Geoffrion LA, Biery JC. Density of some low melting alloys. Metall Trans AIME. 1965;233:1703.
  • Zhang F, Gu L. The crystal structure of the rare earth orthovanadates, LnVO4 (Ln = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu). J Rare Earths. 1983;3:56.
  • Rahou Z, Mahdouk K. Thermodynamic reassessment of the Sm–Ni binary system. J Alloys Compds. 2016;664:469–475. doi:10.1016/j.jallcom.2015.12.215
  • Rahou Z, Mahdouk K, Moustain D, et al. Thermodynamic reassessment of Ni-Pr binary system. J Alloys Compds. 2015;620:204–209. doi:10.1016/j.jallcom.2014.09.116
  • Hussain A, Van Ende MA, Kim J, et al. Critical thermodynamic evaluation and optimization of the Co–Nd, Cu–Nd and Nd–Ni systems. Calphad. 2013;41:26–41. doi:10.1016/j.calphad.2012.12.003
  • Rahou Z, Mahdouk K. Thermodynamic reassessment of Gd–Ni system. J Alloys Compds. 2015;648:346–352. doi:10.1016/j.jallcom.2015.06.201
  • Khodakovskii I, Smirnova N, Bykova T, et al. High temperature heat capacity of palladinite. Geokhimiya. 2011;49:550. doi:10.1134/S0016702911050053

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.