Publication Cover
Canadian Metallurgical Quarterly
The Canadian Journal of Metallurgy and Materials Science
Volume 63, 2024 - Issue 3
826
Views
0
CrossRef citations to date
0
Altmetric
Extractive Hydrometallurgy

Comparison of production of mixed rare earth oxide (Nd/Pr oxide) powders by different precipitation agents from NdFeB magnets’ water leaching

, , &
Pages 843-856 | Received 14 Apr 2023, Accepted 24 Jul 2023, Published online: 01 Aug 2023

References

  • Bide T, Brown TJ, Gunn AG, et al. Utilisation of multiple current and legacy datasets to create a national minerals inventory: a UK case study. Resources Policy. 2020;66:101654. doi:10.1016/j.resourpol.2020.101654
  • Blagoeva D, Pavel C, Wittmer D, et al. (2019). Materials dependences for dual-use technologies relevant to Europe's defence sector.
  • Glöser S, Espinoza LT, Gandenberger C, et al. Raw material criticality in the context of classical risk assessment. Resour Policy. 2015;44:35–46. doi:10.1016/j.resourpol.2014.12.003
  • Lewicka E, Guzik K, Galos K. On the possibilities of critical raw materials production from the EU’s primary sources. Resources. 2021;10(5):50), doi:10.3390/resources10050050
  • Mudali UK, Patil M, Saravanabhavan R, et al. Review on E-waste recycling: part II—technologies for recovery of rare earth metals. Trans Indian Natl Acad Eng. 2021;6(3):1–19. doi:10.1007/s41403-021-00231-0
  • Silvestri L, Forcina A, Silvestri C, et al. Circularity potential of rare earths for sustainable mobility: recent developments, challenges and future prospects. J Clean Prod. 2021;292:126089. doi:10.1016/j.jclepro.2021.126089
  • Blengini GA, El Latunussa C, Eynard U, et al. Study on the EU's list of critical raw materials. Brussels: Publications Office of the European Union; 2020.
  • Lucas J, Lucas P, Le Mercier T, et al. Rare earths: science, technology, production and use. Amsterdam: Elsevier; 2014.
  • Charalampides G, Vatalis KI, Apostoplos B, et al. Rare earth elements: industrial applications and economic dependence of Europe. Procedia Econ Finance. 2015;24:126–135. doi:10.1016/S2212-5671(15)00630-9
  • Biesiekierski A, Li Y, Wen C. The application of the rare earths to magnesium and titanium metallurgy in Australia. Adv Mater. 2020;32(18):1901715. doi:10.1002/adma.201901715
  • Bian Y, Guo S, Tang K, et al. Recovery of rare earth elements from NdFeB magnet scraps by pyrometallurgical processes. Rare Met Technol. 2016;2015:239–248. doi:10.1007/978-3-319-48188-3_27
  • Uysal E, Al S, Emil-Kaya E, et al. Hydrometallurgical recycling of waste NdFeB magnets: design of experiment, optimisation of low concentrations of sulphuric acid leaching and process analysis. Can Metall Q. 2023;62(1):107–118. doi:10.1080/00084433.2022.2058152
  • Kumari A, Sahu SK. A comprehensive review on recycling of critical raw materials from spent neodymium iron boron (NdFeB) magnet. Sep Purif Technol. 2023;317:123527. doi:10.1016/j.seppur.2023.123527
  • Akcil A, Ibrahim YA, Meshram P, et al. Hydrometallurgical recycling strategies for recovery of rare earth elements from consumer electronic scraps: a review. J Chem Technol Biotechnol. 2021;96(7):1785–1797. doi:10.1002/jctb.6739
  • Han KN. Characteristics of precipitation of rare earth elements with various precipitants. Minerals. 2020;10(2):178. doi:10.3390/min10020178
  • Chi RA, Xu ZG. A solution chemistry approach to the study of rare earth element precipitation by oxalic acid. Metall Mater Trans B. 1999;30:189–195. doi:10.1007/s11663-999-0047-0
  • Han KN. Characteristics of precipitation of rare earth elements with various precipitants. Minerals. 2020;10(2):178. doi:10.3390/min10020178
  • Silva RG, Morais CA, Teixeira LV, et al. Selective precipitation of high-quality rare earth oxalates or carbonates from a purified sulphuric liquor containing soluble impurities. Min Metall Explor. 2019;36:967–977. doi:10.1007/s42461-019-0090-6
  • Parhi PK, Sethy TR, Rout PC, et al. Separation and recovery of neodymium and praseodymium from permanent magnet scrap through the hydrometallurgical route. Sep Sci Technol. 2016;51(13):2232–2241. doi:10.1080/01496395.2016.1200087
  • Rabatho JP, Tongamp W, Takasaki Y, et al. Recovery of Nd and Dy from rare earth magnetic waste sludge by hydrometallurgical process. J Mater Cycles Waste Manage. 2013;15:171–178. doi:10.1007/s10163-012-0105-6
  • Önal MAR, Aktan E, Borra CR, et al. Recycling of NdFeB magnets using nitration, calcination and water leaching for REE recovery. Hydrometallurgy. 2017;167:115–123. doi:10.1016/j.hydromet.2016.11.006
  • Emil-Kaya E, Stopic S, Gürmen S, et al. Production of rare earth element oxide powders by solution combustion: a new approach for recycling of NdFeB magnets. RSC Adv. 2022;12(48):31478–31488. doi:10.1039/D2RA05876F
  • Emil-Kaya E, Polat B, Stopic S, et al. Recycling of NdFeB magnets employing oxidation, selective leaching, and iron precipitation in an autoclave. RSC Adv. 2023;13(2):1320–1332. doi:10.1039/D2RA06883D
  • Marins AAL, Banhos SG, Muri EJB, et al. Synthesis by coprecipitation with oxalic acid of rare earth and nickel oxides from the anode of spent Ni–Mh batteries and its electrochemical properties. Mater Chem Phys. 2020;242:122440. doi:10.1016/j.matchemphys.2019.122440
  • Wang Y, Liu Y, Guo T, et al. Lanthanum hydroxide: a highly efficient and selective adsorbent for arsenate removal from aqueous solution. Environ Sci Pollut Res. 2020;27:42868–42880. doi:10.1007/s11356-020-10240-1
  • Yin, J. Q., Zou, Z. Q., & Tian, J. (2020). Preparation of crystalline rare earth carbonates with large particle size from the lixivium of weathered crust elution-deposited rare earth ores. Int J Miner Metall Mater, 27, 1482–1488. doi:10.1007/s12613-020-2066-4