Publication Cover
Canadian Metallurgical Quarterly
The Canadian Journal of Metallurgy and Materials Science
Latest Articles
26
Views
0
CrossRef citations to date
0
Altmetric
Research Article

An investigation of failure analysis of a superheater boiler tube working for 40 months

Received 24 Aug 2023, Accepted 15 Nov 2023, Published online: 27 Nov 2023

References

  • Ahmadi A, Shayegani Akmal M, Pasha A, et al. Failure analysis of cracked 2.25 Cr–1.0 Mo steel tubes of an oil refinery boiler. Eng Fail Anal. 2020;110:104435; doi:10.1016/j.engfailanal.2020.104435
  • Dsilva PC, Bhat S, Banappanavar J, et al. Premature failure of superheater tubes in a fertilizer plant. Eng Fail Anal. 2021;121:105152; doi:10.1016/j.engfailanal.2020.105152
  • Haghighat-Shishavan B, Firouzi-Nerbin H, Nazarian-Samani M, et al. Failure analysis of a superheater tube ruptured in a power plant boiler: main causes and preventive strategies. Eng Fail Anal. 2019;98:131–140; doi:10.1016/j.engfailanal.2019.01.016
  • Lee NH, Kim S, Choe BH, et al. Failure analysis of a boiler tube in USC coal power plant. Eng Fail Anal. 2009;16:2031–2035; doi:10.1016/j.engfailanal.2008.12.006
  • Liu W. The dynamic creep rupture of a secondary superheater tube in a 43MW coal-fired boiler by the decarburization and multilayer oxide scale buildup on both sides. Eng Fail Anal. 2015;53:1–14; doi:10.1016/j.engfailanal.2015.03.018
  • Karimi A. Failure analysis of utility boiler superheater tubes of A213 T12. J Fail Anal Prevent. 2023;23:30–36; doi:10.1007/s11668-022-01550-2
  • Ghosh M. Failure investigation of boiler tube: a root cause analysis. J Fail Anal Prevent. 2023;23:1222–1231; doi:10.1007/s11668-023-01671-2
  • Daneshvar-Fatah F, Mostafaei A, Hosseinzadeh-Taghani R, et al. Caustic corrosion in a boiler waterside tube: root cause and mechanism. Eng Fail Anal. 2013;28:69–77; doi:10.1016/j.engfailanal.2012.09.010
  • Ghosh D, Roy H, Ray S, et al. High temperature corrosion failure of a secondary superheater tube in a thermal power plant boiler. High Temp Mater Proc. 2009;28:109–114; doi:10.1515/HTMP.2009.28.1-2.109
  • Ghosh D, Mitra SK. High temperature corrosion problem of boiler components in presence of sulphur and alkali based fuels. High Temp Mater Proc. 2011;30; doi:10.1515/htmp.2011.011
  • Gu GP, Li J, Lafrenière Y, et al. Pitting characterization of 90/10 cupro-nickel chiller tubes. Can Metall Q. 2007;46:473–484; doi:10.1179/cmq.2007.46.4.473
  • Kim YS, Kim WC, Kim JG. Bulging rupture and caustic corrosion of a boiler tube in a thermal power plant. Eng Fail Anal. 2019;104:560–567. doi:10.1016/j.engfailanal.2019.06.022
  • Soltanloo M, Babaee MH, Hosseini Yeganeh SE, et al. Root cause failure investigation of a boiler waterwall tube employed in a 325 MW thermal power plant: caustic corrosion phenomenon and its effects. Eng Fail Anal. 2022;133:105974, doi:10.1016/j.engfailanal.2021.105974
  • Khajavi MR, Abdolmaleki AR, Adibi N, et al. Failure analysis of bank front boiler tubes. Eng Fail Anal. 2007;14:731–738. doi:10.1016/j.engfailanal.2005.10.017
  • Rao MA, Babu RS, Kumar MVP. Stress corrosion cracking failure of a SS 316L high pressure heater tube. Eng Fail Anal. 2018;90:14–22. doi:10.1016/j.engfailanal.2018.03.013
  • Srikanth S, Gopalakrishna K, Das SK, et al. Phosphate induced stress corrosion cracking in a waterwall tube from a coal fired boiler. Eng Fail Anal. 2003;10:491–501. doi:10.1016/S1350-6307(03)00014-1
  • Mobin M, Malik AU. Caustic corrosion failure of back wall riser tube in a high-pressure boiler. J Fail Anal Prev. 2011;11:357–362. doi:10.1007/s11668-011-9460-1
  • Verein Deutscher Eisenhuttenleute. The appearance of cracks and fractures in metallic materials. Düsseldorf: German Edition; 1996, p. 49-63.
  • Cheriet N, Bacha NE, Skender A. Knowledge base system (KBS) applied on corrosion damage assessment on metallic structure pipes. Heliyon. 2018;4:e00865; doi:10.1016/j.heliyon.2018.e00865
  • Awwaluddin M, Hastuty S, Riyandwita BW, et al. Failure analysis of boiler leakage owing to caustic corrosion on Cr-Mo steel. IOP Conf Ser: Mater Sci Eng. 2019;536:012020; doi:10.1088/1757-899X/536/1/012020
  • Chaudhuri S. Life prediction of boiler tubes in corrosive environments. Natl Workshop Boiler Corros. 1995;6:1–22.
  • Sorell G. The role of chlorine in high temperature corrosion in waste-to-energy plants. Mater High Temp. 1997;14:207–220. doi:10.1080/09603409.1997.11689546
  • Sun X, Ning Y, Yang J, et al. Study on high temperature corrosion mechanism of water wall tubes of 350 MW supercritical unit. Eng Fail Anal. 2021;121:105–131. doi:10.1016/j.engfailanal.2020.105131
  • Xiong X, Liu X, Tan H, et al. Investigation on high temperature corrosion of water-cooled wall tubes at a 300 MW boiler. J Energy Inst. 2020;93(1):377–386. doi:10.1016/j.joei.2019.02.003
  • Deport R, Hero HM. The Nalco guide to boiler failure analysis. New York: McCraw-Hill Inc; 1944, p. 57.
  • Khoshnaw F, Gubner R. Corrosion atlas case studies. first edition Netherlands: Elsevier; 2021, p. 29.
  • Abouswa K, Elshawesh F, Abuargoub A. Stress corrosion cracking (caustic embrittlement) of super heater tubes. Desalination. 2008;222:682–688. doi:10.1016/j.desal.2007.02.073

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.