Publication Cover
Canadian Metallurgical Quarterly
The Canadian Journal of Metallurgy and Materials Science
Latest Articles
48
Views
0
CrossRef citations to date
0
Altmetric
Research Letter

Fe–Ni–Cr alloy matrix composite reinforced by superhard in-situ TiB2 produced through casting

Received 12 Sep 2023, Accepted 19 Dec 2023, Published online: 29 Dec 2023

References

  • Rana R. Low-density steels. JOM. 2014;66:1730–1733. doi:10.1007/s11837-014-1137-2
  • Rana R. High modulus steels. Can Metall Q. 2014;53:241–242. doi:10.1179/0008443314Z.000000000178
  • Wu N, Xue F, Yang H, et al. Effects of TiB2 particle size on the microstructure and mechanical properties of TiB2-based composites. Ceram Int. 2019;45:1370–1378. doi:10.1016/j.ceramint.2018.08.270
  • Wang Z-J, Li Y-W, Zhang W-N, et al. Microstructural evolution and mechanical properties of titanium-alloying high borated steel sheets fabricated by twin-roll strip casting. Mater Sci Eng A. 2021;811:141067. doi:10.1016/j.msea.2021.141067
  • Li B, Liu Y, Cao H, et al. Rapid synthesis of TiB2/Fe composite in situ by spark plasma sintering. J Mater Sci. 2009;44:3909–3912. doi:10.1007/s10853-009-3527-3
  • Gai L, Ziemnicka-Sylwester M. The TiB2-based Fe-matrix composites fabricated using elemental powders in one step process by means of SHS combined with pseudo-HIP. Int J Refract Met Hard Mater. 2014;45:141–146. doi:10.1016/j.ijrmhm.2014.04.008
  • Ziemnicka Sylwester M, Gai L, Miura S. Effect of (Ti:B) atomic ratio on mechanical properties of TiB2–Fe composites “in situ” fabricated via self-propagating high-temperature synthesis. Mater Des. 2015;69:1–11. doi:10.1016/j.matdes.2014.12.036
  • Anal A, Bandyopadhyay TK, Das K. Synthesis and characterization of TiB2-reinforced iron-based composites. J Mater Proc Tech. 2006;172:70–76. doi:10.1016/j.jmatprotec.2005.09.011
  • Darabara M, Papadimitriou GD, Bourithis L. Production of Fe–B–TiB2 metal matrix composites on steel surface. Surf Coat Technol. 2006;201:3518–3523. doi:10.1016/j.surfcoat.2006.08.105
  • Darabara M, Papadimitriou GD, Bourithis L. Tribological evaluation of Fe–B–TiB2 metal matrix composites. Surf Coat Technol. 2007;202:246–253. doi:10.1016/j.surfcoat.2007.05.023
  • Sadhasivam M, Raman Sankaranarayanan S, Kumaresh Babu SP. Synthesis and characterization of TiB2 reinforced AISI 420 stainless steel composite through vacuum induction melting technique. Mater Today Proc. 2020;22:2550–2558. doi:10.1016/j.matpr.2020.03.385
  • Baron C, Springer H, Raabe D. Effects of Mn additions on microstructure and properties of Fe–TiB2 based high modulus steels. Mater Des. 2016;111:185–191. doi:10.1016/j.matdes.2016.09.003
  • Zheng XQ, Liu Y, Li J, et al. Boride precipitation and mechanical behaviour of high boron stainless steel with boron and titanium additions. Int J Mater Prod Technol. 2015;51:332. doi:10.1504/IJMPT.2015.072559
  • Cha L, Lartigue-Korinek S, Walls M, et al. Interface structure and chemistry in a novel steel-based composite Fe–TiB2 obtained by eutectic solidification. Acta Mater. 2012;60:6382–6389. doi:10.1016/j.actamat.2012.08.017
  • Dammak M, Gasperini M, Barbier D. Microstructural evolution of iron based metal–matrix composites submitted to simple shear. Mat Sci Eng A. 2014;616:123–131. doi:10.1016/j.msea.2014.08.004
  • Dorhmi K, Derrien K, Hadjem-Hamouche Z, et al. Experimental study and micromechanical modelling of the effective elastic properties of Fe–TiB2 composites. Compos Struct. 2021;272:114122. doi:10.1016/j.compstruct.2021.114122
  • Springer H, Baron C, Szczepaniak A, et al. Stiff, light, strong and ductile: nano-structured high modulus steel. Sci Report. 2017;7:6. doi:10.1038/s41598-017-02861-3
  • Szczepaniak A, Springer H, Fernández RA, et al. Strengthening Fe–TiB2 based high modulus steels by precipitations Mater Des. 2017;124:183–193. doi:10.1016/j.matdes.2017.03.042
  • Fernandez RA, Springer H, Szczepaniak A, et al. In-situ metal matrix composite steels: effect of alloying and annealing on morphology, structure and mechanical properties of TiB2 particle containing high modulus steels. Acta Mater. 2016;107:38–48. doi:10.1016/j.actamat.2016.01.048
  • Xiong R, Kwon H, Karthik GM, et al. Novel multi-metal stainless steel (316L)/high-modulus steel (Fe-TiB2) composite with enhanced specific modulus and strength using high-pressure torsion. Mater Lett. 2021;303:130510. doi:10.1016/j.matlet.2021.130510
  • Wang ZJ, Zhang WN, Li YW, et al. Heterogeneous nucleation of M2B-type borides (M=Cr, Fe) attached to TiB2 and Ti(C,N) particles in as-cast high borated steel. Mater Charact. 2020;169:110588. doi:10.1016/j.matchar.2020.110588
  • Li B, Liu Y, Li J, et al. Effect of tungsten addition on the microstructure and tensile properties of in situ TiB2/Fe composite produced by vacuum induction melting. Mater Des. 2010;31:877–883. doi:10.1016/j.matdes.2009.07.042
  • Krauss G. Steels: processing, structure, and performance. Materials Park (OH): ASM International; 2005.
  • Wang X, Leng H, Han B, et al. Solidified microstructures and elastic modulus of hypo-eutectic and hyper-eutectic TiB2-reinforced high-modulus steel. Acta Mater. 2019;176:84–95. doi:10.1016/j.actamat.2019.06.052
  • Metallic materials–instrumented indentation test for hardness and materials parameters. (2002). vol ISO 14577, ISO Central Secretariat, Geneva, Switzerland.
  • Oliver WC, Pharr GM. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res. 1992;7:1564–1583. doi:10.1557/JMR.1992.1564
  • Fernandez RA, Szczepaniak A, Springer H, et al. Crystallisation of amorphous Fe–Ti–B alloys as a design pathway for nano-structured high modulus steels. J Alloy Compd. 2017;704:565–573. doi:10.1016/j.jallcom.2017.02.077
  • Huang MX, He BB, Wang X, et al. Interfacial plasticity of a TiB2-reinforced steel matrix composite fabricated by eutectic solidification. Scripta Mater. 2015;99:13–16. doi:10.1016/j.scriptamat.2014.11.015
  • Abbas SZ. Fe–TiB2 composites produced through casting technique. Mater Sci Technol. 2020;36:209–306. doi:10.1080/02670836.2019.1705038
  • Munro RG. Material properties of titanium diboride. J Res Natl Inst Stand Technol. 2000;105:709–720. doi:10.6028/jres.105.057

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.