1,104
Views
3
CrossRef citations to date
0
Altmetric
Review Article

A review of human decomposition in marine environments

ORCID Icon, &
Pages 92-121 | Received 06 Feb 2022, Accepted 09 Oct 2022, Published online: 22 Oct 2022

References

  • WHO. Drowning. 2021. Available from: https://www.who.int/news-room/fact-sheets/detail/drowning
  • Franceschetti L, Palamenghi A, Mazzarelli D, et al. Taphonomic study on drowned victims in a non-sequestered aquatic environment in the Mediterranean Sea. Int J Legal Med. 2022;136(3):887–895.
  • Winskog C. Underwater disaster victim identification: the process and the problems. Forensic Sci Med Pathol. 2012;8(2):174–178.
  • Anderson GS, Hobischak NR. Determination of time of death for humans discovered in saltwater using aquatic organism succession and decomposition rates. Canadian Police Research Centre. 2002.
  • Ellingham STD, Perich P, Tidball-Binz M. The fate of human remains in a maritime context and feasibility for forensic humanitarian action to assist in their recovery and identification. Forensic Sci Int. 2017;279:229–234.
  • Missing Migrants Project. Migration within the Mediterranean. 2021 [Retrieved 2021 Dec 1] Available from: https://missingmigrants.iom.int/region/mediterranean
  • Ribéreau-Gayon A, Rando C, Morgan R. Human remains in marine environments: challenges and future developments. In Barone PM, Groen WJM, editors. Multidisciplinary approaches to forensic archaeology. Cham: Springer; 2018b. p. 131–154.
  • Stuart BH, Ueland M. Decomposition in aquatic environments. In: Schotsmans EMJ, Màrquez-Grant N, Forbes SL, editors. Taphonomy of human remains. Hoboken, NJ: Wiley; 2017. p. 235–250.
  • Becker RF. Introduction In: Underwater forensic investigation. 2nd ed. Boca Raton, FL: CRC Press; 2019. p. 1–14.
  • Anderson GS. Decomposition and invertebrate colonization of cadavers in coastal marine environments. In: Amendt J, Goff L, Campobasso MCP, Grassberger M, editors. Current concepts in forensic entomology. Dordrecht: Springer; 2010. p. 223–272.
  • Anderson GS, Bell LS. Deep coastal marine taphonomy: investigation into carcass decomposition in the Saanich Inlet, British Columbia using a baited camera. PLoS One. 2014;9(10):e110710.
  • Anderson GS, Bell LS. Impact of marine submergence and season on faunal colonization and decomposition of pig carcasses in the Salish Sea. PLoS One. 2016;11(3):e0149107.
  • Anderson GS, Bell LS. Comparison of faunal scavenging of submerged carrion in two seasons at a depth of 170 m, in the strait of Georgia, British Columbia. Insects. 2017;8(1):33.
  • Anderson GS, Hobischak NR. Decomposition of carrion in the marine environment in British Columbia, Canada. Int J Legal Med. 2004;118(4):206–209.
  • Haglund WD. Disappearance of soft tissue and the disarticulation of human remains from aqueous environments. J Forensic Sci. 1993;38(4):806–815.
  • Donoghue ER, Minnigerode SC. Human body buoyancy: A study of 98 men. J Forensic Sci. 1977;22(3):573–579.
  • Mateus M, de Pablo H, Vaz N. An investigation on body displacement after two drowning accidents. Forensic Sci Int. 2013;229(1-3):e6–e12.
  • Matuszewski S, Hall MJR, Moreau G, et al. Pigs vs people: the use of pigs as analogues for humans in forensic entomology and taphonomy research. Int J Legal Med. 2020;134(2):793–810.
  • Dabbs GR, Connor M, Bytheway JA. Interobserver reliability of the total body score system for quantifying human decomposition. J Forensic Sci. 2016;61(2):445–451.
  • Kelly JA, van der Linde TC, Anderson GS. The influence of clothing and wrapping on carcass decomposition and arthropod succession during the warmer seasons in central South Africa. J Forensic Sci. 2009;54(5):1105–1112.
  • Nawrocka M, Frątczak K, Matuszewski S. Inter-rater reliability of total body score-a scale for quantification of corpse decomposition. J Forensic Sci. 2016;61(3):798–802.
  • Simmons T, Cross PA, Adlam RE, et al. The influence of insects on decomposition rate in buried and surface remains. J Forensic Sci. 2010b;55(4):889–892.
  • Teo CH, Hing HL, Hamzah NH, et al. The effect of different coverings on total body score development of buried carcasses. MJMS. 2021;28(4):103–112.
  • Troutman L, Moffatt C, Simmons T. A preliminary examination of differential decomposition patterns in mass graves. J Forensic Sci. 2014;59(3):621–626.
  • Wilson A, Serafin S, Seckiner D, et al. Evaluating the utility of time-lapse imaging in the estimation of post-mortem interval: An Australian case study. Forensic Sci Int Synerg. 2019;1:204–210.
  • Ribéreau-Gayon A, Rando C, Schuliar Y, et al. Extensive unusual lesions on a large number of immersed human victims found to be from cookiecutter sharks (Isistius spp.): an examination of the Yemenia plane crash. Int J Legal Med. 2017;131(2):423–432.
  • Bray SK, Conlan XA, Harvey ML. A preliminary evaluation of the utility of insects and algae for PMI estimation in confined, still-water environments. Aust J Forensic Sci. 2021;ahead-of-print(ahead-of-print):1–12.
  • Cartozzo C, Singh B, Swall J, et al. Postmortem submersion interval (PMSI) estimation from the microbiome of sus scrofa bone in a freshwater lake. J Forensic Sci. 2021b;66(4):1334–1347.
  • Heaton V, Lagden A, Moffatt C, et al. Predicting the postmortem submersion interval for human remains recovered from U.K. waterways. J Forensic Sci. 2010;55(2):302–307.
  • Humphreys MK, Panacek E, Green W, et al. Comparison of protocols for measuring and calculating postmortem submersion intervals for human analogs in fresh water. J Forensic Sci. 2013;58(2):513–517.
  • Palmer C. Estimating the impact of laminar flow on the pattern and rate of decomposition in aquatic environments-is there a better way of modeling decomposition? J Forensic Sci. 2020;65(5):1601–1609.
  • Randall S, Cartozzo C, Simmons T, et al. Prediction of minimum postmortem submersion interval (PMSImin) based on eukaryotic community succession on skeletal remains recovered from a lentic environment. Forensic Sci Int. 2021;323:110784.
  • Reijnen G, Gelderman HT, Oude Grotebevelsborg BFL, et al. The correlation between the aquatic decomposition score (ADS) and the post-mortem submersion interval measured in accumulated degree days (ADD) in bodies recovered from fresh water. Forensic Sci Med Pathol. 2018;14(3):301–306.
  • Wallace JR. Aquatic vertebrate carrion decomposition. In: Benbow ME, Tomberlin JK, Tarone AM, editors. Carrion ecology, evolution, and their applications. Boca Raton, FL: CRC Press; 2015.
  • Deel H, Bucheli S, Belk A, et al. Using microbiome tools for estimating the postmortem interval. In: Budowle B, Schutzer S, Morse S, editors. Microbial forensics. London: Academic Press; 2020. p. 171–191.
  • Hyde ER, Haarmann DP, Lynne AM, et al. The living dead: bacterial community structure of a cadaver at the onset and end of the bloat stage of decomposition. PLoS One. 2013;8(10):e77733.
  • Teather RG. Encyclopedia of underwater investigations. 2nd ed. North Palm Beach, FL: Best Publishing Company; 2013.
  • Pokines JT, Higgs ND. Marine environmental alterations to bone. In Pokines JT, L’Abbé EN, Symes S, editors. Manual of forensic taphonomy. 2nd ed. Boca Raton, FL: CRC Press; 2022. p. 193–250.
  • Simmons T, Adlam RE, Moffatt C. Debugging decomposition data – comparative taphonomic studies and the influence of insects and carcass size on decomposition rate. J Forensic Sci. 2010a;55(1):8–13.
  • De Donno A, Campobasso CP, Santoro V, et al. Bodies in sequestered and non-sequestered aquatic environments: a comparative taphonomic study using decompositional scoring system. Sci Justice. 2014;54(6):439–446.
  • Forbes SL, Wilson ME, Stuart BH. Examination of adipocere formation in a cold water environment. Int J Legal Med. 2011;125(5):643–650.
  • Hobischak NR. Freshwater invertebrate succession and decompositional studies on carrion in British Columbia. Canadian Police Research Centre; 1997.
  • Kahana T, Almog J, Levy J, et al. Marine taphonomy: adipocere formation in a series of bodies recovered from a single shipwreck. J Forensic Sci. 1999;44(5):897–901.
  • Notter SJ, Stuart BH. The effect of body coverings on the formation of adipocere in an aqueous environment. J Forensic Sci. 2012;57(1):120–125.
  • Ubelaker DH, Zarenko KM. Adipocere: What is known after over two centuries of research. Forensic Sci Int. 2011;208(1–3):167–172.
  • Widya M, Moffatt C, Simmons T. The formation of early stage adipocere in submerged remains: a preliminary experimental study. J Forensic Sci. 2012;57(2):328–333.
  • Dumser TK, Türkay M. Postmortem changes of human bodies on the bathyal sea floor–two cases of aircraft accidents above the open sea. J Forensic Sci. 2008;53(5):1049–1052.
  • Hobischak NR, Anderson GS. Time of submergence using aquatic invertebrate succession and decompositional changes. J Forensic Sci. 2002;47(1):142–151.
  • Introna F, Di Vella G, Campobasso CP. Migrant deaths and the Kater Radez I wreck: from recovery of the relict to marine taphonomic findings and identification of the victims. Int J Legal Med. 2013;127(4):871–879.
  • Pampín JB, Rodríguez BAL. Surprising drifting of bodies along the coast of Portugal and Spain. Legal Med. 2001;3:177–182.
  • Haglund WD, Sorg MH. Human remains in water environments. In: Haglund WD, Sorg MH, editors. Advances in forensic taphonomy: method, theory and archaeological perspectives. Boca Raton, FL: CRC Press; 2002. p. 201–218.
  • Davis J, B, Goff L, M. Decomposition patterns in terrestrial and intertidal habitats on Oahu, Hawaii. J Forensic Sci. 2000;45(4):836–842.
  • Magni PA, Tingey E, Armstrong NJ, et al. Evaluation of barnacle (Crustacea: Cirripedia) colonisation on different fabrics to support the estimation of the time spent in water by human remains. Forensic Sci Int. 2021;318:110526.
  • Payne J, King EW. Insect succession and decomposition of pig carcasses in water. J GA Entomol Soc. 1972;7:153–162.
  • Megyesi MS, Nawrocki SP, Haskell NH. Using accumulated degree-days to estimate the postmortem interval from decomposed human remains. J Forensic Sci. 2005;50(3):1–9.
  • van Daalen MA, de Kat D, Oude Grotebevelsborg S, et al. An aquatic decomposition scoring method to potentially predict the postmortem submersion interval of bodies recovered from the North Sea. J Forensic Sci. 2017;62(2):369–373.
  • Palazzo C, Pelletti G, Fais P, et al. Application of aquatic decomposition scores for the determination of the post mortem submersion interval on human bodies recovered from the Northern Adriatic Sea. Forensic Sci Int. 2021;318:110599.
  • Forbes MN, Finaughty S, Miles DA, et al. Inaccuracy of accumulated degree day models for estimating terrestrial post-mortem intervals in Cape Town, South Africa. Forensic Sci Int. 2019;296:67–73.
  • Cockle DL, Bell LS. Human decomposition and the reliability of a ‘Universal’ model for post mortem interval estimations. Forensic Sci Int. 2015;253(136):e131–e139.
  • Webb P. Introduction to oceanography. Pressbooks; 2019. http://rwu.pressbooks.pub/webboceanography/
  • Dickson GC, Poulter RT, Maas EW, et al. Marine bacterial succession as a potential indicator of postmortem submersion interval. Forensic Sci Int. 2011;209(1–3):1–10.
  • Belk AD, Deel HL, Burcham ZM, et al. Animal models for understanding microbial decomposition of human remains. Drug Discovery Today: Disease Models. 2018a;28:117–125.
  • Belk AD, Xu ZZ, Carter DO, et al. Microbiome Data Accurately Predicts the Postmortem Interval Using Random Forest Regression Models. Genes. 2018b;9(2):104.
  • Benbow ME, Pechal JL, Lang JM, et al. The potential of high-throughput metagenomic sequencing of aquatic bacterial communities to estimate the postmortem submersion interval. J Forensic Sci. 2015;60(6):1500–1510.
  • Carter DO. The importance of microbial communities in the estimation of the time since death. In: Hayman J, Oxenham M, editors. Estimation of the time since death: current research and future trends. London: Academic Press; 2020. p. 109–139.
  • Kaszubinski SF, Receveur JP, Nestle ED, et al. Microbial community succession of submerged bones in an aquatic habitat. J Forensic Sci. 2022;67(4):1565–1578.
  • Wallace JR, Receveur JP, Hutchinson PH, et al. Microbial community succession on submerged vertebrate carcasses in a tidal river habitat: implications for aquatic forensic investigations. J Forensic Sci. 2021;66(6):2307–2318.
  • Damann FE, Williams DE, Layton AC. Potential use of bacterial community succession in decaying human bone for estimating postmortem interval. J Forensic Sci. 2015;60(4):844–850.
  • Pittner S, Bugelli V, Benbow ME, et al. The applicability of forensic time since death estimation methods for buried bodies in advanced decomposition stages. PLoS One. 2020;15(12):e0243395.
  • Cartozzo C, Simmons T, Swall J, et al. Postmortem submersion interval (PMSI) estimation from the microbiome of Sus scrofa bone in a freshwater river. Forensic Sci Int. 2021a;318:110480.
  • Hyun CH, Kim H, Ryu S, et al. Preliminary study on microeukaryotic community analysis using NGS technology to determine postmortem submersion interval (PMSI) in the drowned pig. J Microbiol. 2019;57(11):1003–1011.
  • Wójcik J, Tomsia M, Drzewiecki A, et al. Thanatomicrobiome – state of the art and future directions. Postępy Mikrobiologii - Adv Microbiol. 2021;60(1):21–29.
  • Damann FE, Carter DO. Human decomposition ecology and postmortem microbiology In Pokines JT, Symes S, editors. Manual of forensic taphonomy. Boca Raton, FL: CRC Press; 2013. p. 37–50.
  • Caruso G. Microbial colonization in marine environments: overview of current knowledge and emerging research topics. JMSE. 2020;8(2):78.
  • Barwood MJ, Bates V, Long G, et al. “Float First:” Trapped air between clothing layers significantly improves buoyancy on water after immersion. IJARE. 2011;5(2):147–163.
  • Mateus M, Vieira V. Study on the postmortem submersion interval and accumulated degree days for a multiple drowning accident. Forensic Sci Int. 2014;238:e15–e19.
  • Ebbesmeyer C, Haglund WD. Drift trajectories of a floating human body simulated in a hydraulic model of puget sound. J Forensic Sci. 1993;39(1):231–240.
  • Bytheway JA, Pustilnik SM. Determining postmortem interval using glycoproteinous adhesion deposits by Balanus improvisus on human skeletal and dental remains. J Forensic Sci. 2013;58(1):200–205.
  • Sorg MH, Dearborn JH, Monahan EI, et al. Forensic taphonomy in marine contexts. In: Haglund WD, Sorg MH, editors. Forensic taphonomy the postmortem fate of human remains. Boca Raton, FL: CRC Press; 2006. p. 567–604.
  • Kakizaki E, Kozawa S, Imamura N, et al. Detection of marine and freshwater bacterioplankton in immersed victims: post-mortem bacterial invasion does not readily occur. Forensic Sci Int. 2011;211(1–3):9–18.
  • Diaz RJ, Rosenberg R. Marine benthic hypoxia: a review of its ecological effects and the behavioural responses of benthic macrofauna. Oceanogr Mar Biol: Ann Rev. 1995;33:245–303.
  • Carniel S, Umgiesser G, Sclavo M, et al. Tracking the drift of a human body in the coastal ocean using numerical prediction models of the oceanic, atmospheric and wave conditions. Sci Justice. 2002;42(3):143–151.
  • Webber J, Moran K, French C, et al. Fatal coastal drowning incidents: A 10-year review of body recovery times in New Zealand. Forensic Sci Int. 2020;317:110573.
  • Leggio A, Tarzia P, Introna F. The role of forensic anthropology in the medico-legal investigation of remains recovered at sea: analysis of a case. Forensic Sci. 2021;1(3):138–147.
  • Engelhaupt E. How science solved the mystery of feet washing ashore in the Pacific Northwest. National Geographic. 2021. https://www.nationalgeographic.com/science/article/how-science-solved-the-mystery-of-feet-washing-ashore-in-the-pacific-northwest-salish-sea?loggedin=true
  • Pawson C. More than a dozen feet in shoes have washed up on B.C. beaches – and 1 case remains unsolved. CBC News. 2021. Available from: https://www.cbc.ca/news/canada/british-columbia/bc-severed-foot-1.5903703
  • Nasti A. A taphonomic approach to marine abrasion on human bones. FRCIJ. 2017;5(3):00154.
  • Fernández-Jalvo Y, Andrews P. Experimental water abrasion on bones. J Taphonomy. 2003;1(3):147–163.
  • Ribéreau-Gayon A, Carter DO, Regan S. New evidence of predation on humans by cookiecutter sharks in Kauai, Hawaii. Int J Legal Med. 2018a;132(5):1381–1387.
  • Stock MK, Winburn AP, Burgess GH. Skeletal indicators of shark feeding on human remains: evidence from Florida Forensic Anthropology Cases. J Forensic Sci. 2017;62(6):1647–1654.
  • Amon DJ, Glover AG, Wiklund H, et al. The discovery of a natural whale fall in the Antarctic deep sea. Deep Sea Res Part II. 2013;92:87–96.
  • Bennett BA, Smith CR, Glaser B, et al. Faunal community structure of a chemoautotrophic assemblage on whale bones in the deep northeast Pacific Ocean. Mar Ecol Prog Ser. 1994;108:205–223.
  • Hilario A, Cunha MR, Génio L, et al. First clues on the ecology of whale falls in the deep Atlantic Ocean: results from an experiment using cow carcasses. Mar Ecol. 2015;36:82–90.
  • Bell LS, Elkerton A. Unique marine taphonomy in human skeletal material recovered from the medieval warshipMary Rose. Int J Osteoarchaeol. 2007;18(5):523–535.
  • Bell LS, Skinner M, Jones SJ. The speed of post mortem change to the human skeleton and its taphonomic significance. Forensic Sci Int. 1996;82(2):129–140.
  • Byard RW, Both K, Simpson E. The identification of submerged skeletonized remains. Am J Forensic Med Pathol. 2008;29(1):69–71.
  • Pirtle D, Magni PA, Reinecke GW, et al. Barnacle colonization of shoes: Evaluation of a novel approach to estimate the time spent in water of human remains. Forensic Sci Int. 2019;294:1–9.
  • Magni PA, Venn C, Aquila I, et al. Evaluation of the floating time of a corpse found in a marine environment using the barnacle Lepas anatifera L. (Crustacea: Cirripedia: Pedunculata). Forensic Sci Int. 2015;247:e6–e10.
  • Sumida PY, Alfaro-Lucas JM, Shimabukuro M, et al. Deep-sea whale fall fauna from the Atlantic resembles that of the Pacific Ocean. Sci Rep. 2016;6:22139.
  • Hackett CJ. Microscopical focal destruction (tunnels) in exhumed human bones. Med Sci Law. 1981;21(4):243–265.
  • Bell LS. Histotaphonomy. In: Crowder C, Stout SD, editors. Bone histology: An anthropological perspective. Boca Raton, FL: CRC Press; 2011. p. 241–252.
  • Ascenzi A, Silvestrini G. Bone-boring micro-organisms: an experimental investigation. J Hum Evol. 1984;13(6):531–536.
  • Yoshino M, Kimijima T, Miyasaka S, et al. Microscopical study on estimation of time since death in skeletal remains. Forensic Sci Int. 1991;49(2):143–158.
  • Deming JW, Reysenbach A-L, Macko SA, et al. Evidence for the microbial basis of a chemoautotrophic invertebrate community at a whale fall on the deep seafloor- bone-colonizing bacteria and invertebrate endosymbionts. Microsc Res Tech. 1997;37(2):162–170.
  • Pesquero MD, Bell LS, Fernández-Jalvo Y. Skeletal modification by microorganisms and their environments. Hist Biol. 2018;30(6):882–893.
  • Healy CA, Schultz JJ, Parker K, et al. Detecting submerged bodies: controlled research using side-scan sonar to detect submerged proxy cadavers. J Forensic Sci. 2015;60(3):743–752.
  • Ruffell A, Pringle JK, Cassella JP, et al. The use of geoscience methods for aquatic forensic searches. Earth Sci Rev. 2017;171:323–337.
  • Schultz JJ, Healy CA, Parker K, et al. Detecting submerged objects: the application of side scan sonar to forensic contexts. Forensic Sci Int. 2013;231(1–3):306–316.
  • Ruffell A, McKinley J. Forensic geoscience: applications of geology, geomorphology and geophysics to criminal investigations. Earth Sci Rev. 2005;69(3–4):235–247.
  • Latham KE, Miller JJ. DNA recovery and analysis from skeletal material in modern forensic contexts. Forensic Sci Res. 2019;4(1):51–59.
  • Finaughty C, Gibbon VE, Speed B, et al. Lost at sea: A pilot study investigating DNA recovery from teeth in a South African natural marine environment. Forensic Sci Int: Genet Suppl Ser. 2019;7(1):580–581.
  • Jans MME. Microscopic destruction of bone. In: Pokines JT, Symes S, editors. Manual of forensic taphonomy. Boca Raton, FL: CRC Press; 2013. p. 19–36.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.