155
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A preliminary study evaluating the relationship between force and incised trauma on pig rib bones

ORCID Icon &
Pages 62-81 | Received 21 Sep 2022, Accepted 31 Aug 2023, Published online: 08 Sep 2023

References

  • Kemp SE, Carr DJ, Kieser J, et al. Forensic evidence in apparel fabrics due to stab events. Forensic Sci Int. 2009;191(1–3):86–96. doi: 10.1016/j.forsciint.2009.06.013.
  • Macpherson AK, Schull MJ. Penetrating trauma in Ontario emergency departments: a population-based study. Can J Emerg Med. 2007;9(1):16–20. doi: 10.1017/S1481803500014688.
  • Statistics Canada. Table 35-10-0069-01 Number of homicide victims, by method used to commit the homicide. 2019 [cited 2020 Nov 27]. doi: 10.25318/3510006901-eng.
  • Carr DJ, Godhania K, Mahoney PF. Edged weapons awareness. Int J Legal Med. 2019;133(4):1217–1224. doi: 10.1007/s00414-018-1966-6.
  • Kooi RJ, Fairgrieve SI. SEM and stereomicroscopic analysis of cut marks in fresh and burned bone. J Forensic Sci. 2013;58(2):452–458. doi: 10.1111/1556-4029.12050.
  • Thompson TJU, Inglis J. Differentiation of serrated and non-serrated blades from stab marks in bone. Int J Legal Med. 2009;123(2):129–135. doi: 10.1007/s00414-008-0275-x.
  • Bartelink EJ, Wiersema JM, Demaree RS. Quantitative analysis of sharp-force trauma: an application of scanning electron microscopy in forensic anthropology. J Forensic Sci. 2001;46(6):1288–1293. doi: 10.1520/JFS15148J.
  • Humphrey C, Kumaratilake J, Henneberg M. Characteristics of bone injuries resulting from knife wounds incised with different forces. J Forensic Sci. 2017;62(6):1445–1451. doi: 10.1111/1556-4029.13467.
  • Cerutti E, Magli F, Porta D, et al. Metrical assessment of cutmarks on bone: is size important? Leg Med (Tokyo). 2014;16(4):208–213. doi: 10.1016/j.legalmed.2014.03.010.
  • Norman DG, Watson DG, Burnett B, et al. The cutting edge—micro-CT for quantitative tool mark analysis of sharp force trauma to bone. Forensic Sci Int. 2018;283:156–172. doi: 10.1016/j.forsciint.2017.12.039.
  • Crowder C, Rainwater CW, Fridie JS. Microscopic analysis of sharp force trauma in bone and cartilage: a validation study. J Forensic Sci. 2013;58(5):1119–1126. doi: 10.1111/1556-4029.12180.
  • Symes SA, Chapman EA, Rainwater CW, et al. Knife and saw toolmark analysis in bone: a manual designed for the examination of criminal mutilation and dismemberment. Washington, D.C.: NCJRS; 2010.
  • Parmar K, Hainsworth SV, Rutty GN. Quantification of forces required for stabbing with screwdrivers and other blunter instruments. Int J Legal Med. 2012;126(1):43–53. doi: 10.1007/s00414-011-0562-9.
  • O’Callaghan PT, Jones MD, James DS, et al. Dynamics of stab wounds: Force required for penetration of various cadaveric human tissues. Forensic Sci Int. 1999;104(2–3):173–178. doi: 10.1016/S0379-0738(99)00115-2.
  • Jones S, Nokes L, Leadbeatter S. The mechanics of stab wounding. Forensic Sci Int. 1994;67(1):59–63. doi: 10.1016/0379-0738(94)90413-8.
  • Nolan G, Hainsworth SV, Rutty GN. Forces generated in stabbing attacks: an evaluation of the utility of the mild, moderate and severe scale. Int J Legal Med. 2018;132(1):229–236. doi: 10.1007/s00414-017-1702-7.
  • Green MA. Stab wound dynamics—a recording technique for use in medico-legal investigations. J Forensic Sci Soc. 1978;18(3–4):161–163. doi: 10.1016/S0015-7368(78)71196-5.
  • Knight B. The dynamics of stab wounds. Forensic Sci. 1975;6(3):249–255. doi: 10.1016/0300-9432(75)90017-5.
  • Bolliger SA, Kneubuehl BP, Thali MJ, et al. Stabbing energy and force required for pocket-knives to pierce ribs. Forensic Sci Med Pathol. 2016;12(4):394–398. doi: 10.1007/s12024-016-9803-z.
  • Chadwick EKJ, Nicol AC, Lane JV, et al. Biomechanics of knife stab attacks. Forensic Sci Int. 1999;105(1):35–44. doi: 10.1016/S0379-0738(99)00117-6.
  • Turner CH. Biomechanics of bone: determinants of skeletal fragility and bone quality. Osteoporos Int. 2002;13(2):97–104. doi: 10.1007/s001980200000.
  • Hunt AC, Cowling RJ. Murder by stabbing. Forensic Sci Int. 1991;52(1):107–112. doi: 10.1016/0379-0738(91)90102-O.
  • Gaudet JR, Lievers WB, Fairgrieve SI. Development and commissioning of an instrumented pneumatic device to simulate blunt- and sharp-force trauma. Forensic Sci Int. 2020;307:110123. doi: 10.1016/j.forsciint.2019.110123.
  • Nolan G, Hainsworth SV, Rutty GN. Forces required for a knife to penetrate a variety of clothing types. J Forensic Sci. 2013;58(2):372–379. doi: 10.1111/1556-4029.12031.
  • Hogue M, Fairgrieve SI, Lievers WB. Stabbing angle alters peak force and work during sharp force trauma of porcine ribs. Forensic Sci Int. 2020;314:110373. doi: 10.1016/j.forsciint.2020.110373.
  • Kieser J, Whittle K, Wong B, et al. Understanding craniofacial blunt force injury: a biomechanical perspective In: Tsokos M, editor. Forensic pathology reviews. Totowa, NJ: Humana Press; 2009. p. 39–51.
  • Symes SA, L’Abbé EN, Chapman EN, et al. Interpreting traumatic injury to bone in medicolegal investigations In: Dirkmaat DC, editor. A companion to forensic anthropology. Chichester (UK): John Wilen & Sons; 2012. p. 340–389.
  • Sharir A, Barak MM, Shahar R. Whole bone mechanics and mechanical testing. Vet J. 2008;177(1):8–17. doi: 10.1016/j.tvjl.2007.09.012.
  • Aromatario M, Cappelletti S, Bottoni E, et al. Weapon identification using antemortem CT with 3D reconstruction, is it always possible? – A report in a case of facial blunt and sharp injuries using an ashtray. Leg Med (Tokyo). 2016;18:1–6. doi: 10.1016/j.legalmed.2015.11.003.
  • Capuani C, Rouquette J, Payré B, et al. Deciphering the elusive nature of sharp bone trauma using epifluorescence macroscopy: A comparison study multiplexing classical imaging approaches. Int J Legal Med. 2013;127(1):169–176. doi: 10.1007/s00414-012-0678-6.
  • Sandras A, Guilbeau-Frugier C, Savall F, et al. Sharp bone trauma diagnosis: a validation study using epifluorescence microscopy. Int J Legal Med. 2019;133(2):521–528. doi: 10.1007/s00414-018-1944-z.
  • Villa C, Flies MJ, Jacobsen C. Forensic 3D documentation of bodies: Simple and fast procedure for combining CT scanning with external photogrammetry data. J Forensic Radiol Imaging. 2018;12:e2–7–e7. doi: 10.1016/j.jofri.2017.11.003.
  • Otárola-Castillo E, Torquato MG, Hawkins HC, et al. Differentiating between cutting actions on bone using 3D geometric morphometrics and Bayesian analyses with implications to human evolution. J Archaeol Sci. 2018;89:56–67. doi: 10.1016/j.jas.2017.10.004.
  • Edwards J, Rogers T. The accuracy and applicability of 3D modeling and printing blunt force cranial injuries. J Forensic Sci. 2018;63(3):683–691. doi: 10.1111/1556-4029.13627.
  • Maté-González MÁ, Aramendi J, Yravedra J, et al. Assessment of statistical agreement of three techniques for the study of cut marks: 3D digital microscope, laser scanning confocal microscopy and micro-photogrammetry. J Microsc. 2017;267(3):356–370. doi: 10.1111/jmi.12575.
  • Sansoni G, Cattaneo C, Trebeschi M, et al. Feasibility of contactless 3D optical measurement for the analysis of bone and soft tissue lesions: New technologies and perspectives in forensic sciences. J Forensic Sci. 2009;54(3):540–545. doi: 10.1111/j.1556-4029.2009.01041.x.
  • Thali MJ, Braun M, Brueschweiler W, et al. “Morphological imprint”: Determination of the injury-causing weapon from the wound morphology using forensic 3D/CAD-supported photogrammetry. Forensic Sci Int. 2003;132(3):177–181. doi: 10.1016/S0379-0738(03)00021-5.
  • Bello SM. New results from the examination of cut-marks using three-dimensional imaging. Amsterdam, NL: Elsevier; 2011.
  • Vermeij EJ, Zoon PD, Chang SBCG, et al. Analysis of microtraces in invasive traumas using SEM/EDS. Forensic Sci Int. 2012;214(1–3):96–104. doi: 10.1016/j.forsciint.2011.07.025.
  • Maté González MÁ, Yravedra J, González-Aguilera D, et al. Micro-photogrammetric characterization of cut marks on bones. J Archaeol Sci. 2015;62:128–142. doi: 10.1016/j.jas.2015.08.006.
  • Gibelli D, Mazzarelli D, Porta D, et al. Detection of metal residues on bone using SEM-EDS-part II: Sharp force injury. Forensic Sci Int. 2012;223(1–3):91–96. doi: 10.1016/j.forsciint.2012.08.008.
  • Errickson D, Thompson TJU, Rankin BWJ. The application of 3D visualization of osteological trauma for the courtroom: A critical review. J Forensic Radiol Imaging. 2014;2(3):132–137. doi: 10.1016/j.jofri.2014.04.002.
  • Verhoff MA, Ramsthaler F, Krähahn J, et al. Digital forensic osteology-possibilities in cooperation with the Virtopsy® project. Forensic Sci Int. 2008;174(2–3):152–156. doi: 10.1016/j.forsciint.2007.03.017.
  • Karatas OH, Toy E. Three-dimensional imaging techniques: a literature review. Eur. J. Dent. 2014;8(1):132–140.
  • Thali MJ, Braun M, Dirnhofer R. Optical 3D surface digitizing in forensic medicine: 3D documentation of skin and bone injuries. Forensic Sci Int. 2003;137(2–3):203–208. doi: 10.1016/j.forsciint.2003.07.009.
  • Virgili R, Degni M, Schivazappa C, et al. Effect of age at slaughter on carcass traits and meat quality of Italian heavy pigs. J Anim Sci. 2003;81(10):2448–2456. doi: 10.2527/2003.81102448x.
  • Reiland S. Growth and skeletal development of the pig. Acta Radiol Suppl. 1978;358:45–90.
  • Wilson JB, Pauling GE, Mcewen BJ, et al. A descriptive study of the frequency and characteristics of proliferative enteropathy in swine in Ontario by analyzing routine animal health surveillance data. Can Vet J. 1999;40:717.
  • Comstock RE, Winters LM, Cummings JN. The effect of sex on the development of the pig. J Anim Sci. 1944;3(2):120–128. doi: 10.2527/jas1944.32120x.
  • Horsfall I, Prosser PD, Watson CH, et al. An assessment of human performance in stabbing. Forensic Sci Int. 1999;102(2–3):79–89. doi: 10.1016/S0379-0738(99)00055-9.
  • Ferllini R. Macroscopic and microscopic analysis of knife stab wounds on fleshed and clothed ribs. J Forensic Sci. 2012;57(3):683–690. doi: 10.1111/j.1556-4029.2012.02087.x.
  • Bello SM, Soligo C. A new method for the quantitative analysis of cutmark micromorphology. J Archaeol Sci. 2008;35(6):1542–1552. doi: 10.1016/j.jas.2007.10.018.
  • Talbot BS, Gange CP, Chaturvedi A, et al. Traumatic rib injury: patterns, imaging pitfalls, complications, and treatment. Radiographics. 2017;37(2):628–651. doi: 10.1148/rg.2017160100.
  • France DL. Part I: general osteology. Human and nonhuman bone identification: a concise field guide. Boca Raton: CRC Press; 2011. p. 3–43.
  • Bonney H. An investigation of the use of discriminant analysis for the classification of blade edge type from cut marks made by metal and bamboo blades. Am J Phys Anthropol. 2014;154(4):575–584. doi: 10.1002/ajpa.22558.
  • King C, Birch W. Assessment of maceration techniques used to remove soft tissue from bone in cut mark analysis. J Forensic Sci. 2015;60(1):124–135. doi: 10.1111/1556-4029.12582.
  • Couse T, Connor M. A comparison of maceration techniques for use in forensic skeletal preparations. J Forensic Investig. 2015;3(1):1–6.
  • Silverman E. The effects of common methods of soft tissue removal on skeletal remains: a comparative analysis. 2018. Graduate Student Theses, Dissertations, & Professional Papers. 11183. https://scholarworks.umt.edu/etd/11183.
  • Ormstad K, Karlsson T, Enkler L, et al. Patterns in sharp force fatalities—a comprehensive forensic medical study. J Forensic Sci. 1986;31(2):12284J. doi: 10.1520/JFS12284J.
  • Peace BN, Pokines JT, Cummings PM, et al. Examination of hacking and blunt force skeletal trauma. J Forensic Sci. 2020;65(5):1416–1423. doi: 10.1111/1556-4029.14492.
  • Waltenberger L, Schutkowski H. Effects of heat on cut mark characteristics. Forensic Sci Int. 2017;271:49–58. doi: 10.1016/j.forsciint.2016.12.018.
  • St»hle L, Wold S. Analysis of variance (ANOVA). Chemom Intell Lab Syst. 1989;6(4):259–272. doi: 10.1016/0169-7439(89)80095-4.
  • Sharpe D. Chi-square test is statistically significant: now what? Pract Assessment, Res Eval Pract Assess. 2015;20(8):1–10. 10.7275/tbfa-x148.
  • McHugh ML. The chi-square test of independence. Biochem Med (Zagreb). 2013;23(2):143–149. doi: 10.11613/BM.2013.018.
  • Martin JR. Identifying osseous cut mark morphology for common serrated knives. Master’s Thesis, University of Tennessee, 1999. https://trace.tennessee.edu/utk_gradthes/4193
  • Vachirawongsakorn V, Painter J, Márquez-Grant N. Knife cut marks inflicted by different blade types and the changes induced by heat: a dimensional and morphological study. Int J Legal Med. 2022;136(1):329–342. doi: 10.1007/S00414-021-02726-5/FIGURES/10.
  • Pullen AE, Kieser DC, Hooper G, et al. A study into the viability of Synbone® as a proxy for Sus scrofa (domesticus) ribs for use with 7.62 × 51 mm full metal jacket ammunition in ballistic testing. Forensic Sci Med Pathol. 2021;17(4):665–669. doi: 10.1007/S12024-021-00426-5/TABLES/1.
  • Appleby-Thomas GJ, Fitzmaurice BC, Hameed A, et al. The shock response and suitability of Synbone® as a tissue simulant. AIP Conf Proc. 2017;1793(1):140009. doi: 10.1063/1.4971729.
  • Henwood BJ, Appleby-Thomas G. The suitability of Synbone® as a tissue analogue in ballistic impacts. J Mater Sci. 2020;55(7):3022–3033. doi: 10.1007/S10853-019-04231-Y/FIGURES/12.
  • Ní Annaidh A, Cassidy M, Curtis M, et al. A combined experimental and numerical study of stab-penetration forces. Forensic Sci Int. 2013;233(1–3):7–13. doi: 10.1016/j.forsciint.2013.08.011.
  • Komo L, Grassberger M. Experimental sharp force injuries to ribs: multimodal morphological and geometric morphometric analyses using micro-CT, macro photography and SEM. Forensic Sci Int. 2018;288:189–200. doi: 10.1016/J.FORSCIINT.2018.04.048.
  • Hainsworth S. Cutting crimes. Ingenia. 2008;(37):37–43.
  • Hainsworth SV, Delaney RJ, Rutty GN. How sharp is sharp? Towards quantification of the sharpness and penetration ability of kitchen knives used in stabbings. Int J Legal Med. 2008;122(4):281–291. doi: 10.1007/s00414-007-0202-6.
  • Love JC. Sharp force trauma analysis in bone and cartilage: a literature review. Forensic Sci Int. 2019;299:119–127. doi: 10.1016/j.forsciint.2019.03.035.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.