Publication Cover
Caryologia
International Journal of Cytology, Cytosystematics and Cytogenetics
Volume 60, 2007 - Issue 3
181
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Mobile elements and inverted rearrangements in Trimerotropis pallidipennis (Orthoptera: Acrididae)

, , , , &
Pages 212-221 | Received 20 Jan 2006, Accepted 21 Nov 2006, Published online: 31 Jan 2014

REFERENCES

  • Auge-Gouillou C., Bigot Y., Pollet N., Hamelin M.H., Meunier-Rotival M. and Periquet G., 1995—Human and other mammalian genomes contain transposons of the mariner family. FEBS Lett., 368: 541–546.
  • Aulard S., Vaudin P., Ladeveze V., Chaminade N., Periquet G. and Lemeunier F., 2004—Maintenance of a large pericentric inversion generated by the hobo transposable element in a transgenic line of Drosophila melanogaster. Heredity, 92: 151–155.
  • Bagasra O. and Hansen J., 1997—In situ PCR techniques. Edited by John Wiley & Sons. New York.
  • Beall E.L. and Rio D.C., 1997—Drosophila P-ele-ment transposase is a novel site-specific endonucle-ase. Genes Dev., 11: 2137–2151.
  • Caceres M., Ranz J. M., Barbadilla A., Long M. and Ruiz A., 1999—Generation of a widespread Drosophila inversion by transposable elements. Science, 285: 415–418.
  • Cáceres M., Puig M. and Ruiz A., 2001—Molecular characterization of two natural hot spots in the Drosophila buzzatii genome induced by transposon insertions. Genome Res., 11: 1353–1364.
  • Capy P., Langin T., Bigot Y., Brunet F., Daboussi, M.J., Periquet, G., David J.R. and Hartl D.L., 1994—Horizontal transmission versus ancient origin: mariner in the witness box. Genetica, 93: 161–170.
  • Capy P., Gasperi G., Biemont C. and Bazin C., 2000—Stress and transposable elements: co-evolution or useful parasites?. Heredity, 85: 101–106.
  • Carson H.L., 1959—Genetics conditions which promoter retard the formation of species. Cold. Spring. Harb. Symp. Quant. Biol., 24: 87–104.
  • Casals F., Caceres M. and Ruiz A., 2003—The fold- back-like transposon Galileo is involved in the generation of two different natural chromosomal inversions of Drosophila buzzatii. Mol. Biol. Evol., 20: 674–685.
  • Casse N., Paridier E., Bigot Y., Loiseau C. and Laulier M., 2000—Mariner, a mobile DNA transposon characterized in the genomes of several hydrothermal invertebrate species. Interridge, 9: 15–17.
  • Chalmers R.M. and Kleckner N., 1996—IS10/Tn10 transposition efficiently accommodates diverse transposon end configurations. EMBO J., 15: 5112–5122.
  • Colombo P.C. and Confalonieri V.A., 1996—Adaptive pattern of inversion polymorphism in Trimerotropis pallidipennis. Correlation with environmental variables: an overall view. Hereditas, 125: 289–296.
  • Colombo P.C., 2002—Chromosome inversion polymorphisms influence morphological traits in Trimerotropis pallidipensis (Orthoptera). Genetica, 144: 247–252.
  • Colombo P.C. and Confalonieri V.A., 2004—Cyto-geography and the evolutionary significance of B-chromosomes in relation to inverted rearrangements in a grasshoper species. Cytogenetics and Genome Research, 106: 351–358.
  • Confalonieri V. A., 1988—Effects of centric shift polymorphisms on chiasma conditions in Trimerotropis pallidipennis (Oedipodinae: Acrididae). Genetica, 76: 171–179.
  • Confalonieri V.A., Sequeira A., Todaro L. and Vi-Lardi J.C., 1998—Mitochondrial DNA and phylo- geography of the grasshopper Trimerotropis pallidipennis in relation with clinal distribution of chromosome polymorphisms. Heredity, 81: 444–452.
  • Confalonieri V.A. and Colombo P.C., 1989—Inversion polymorphism in Trimerotropis pallidipennis (Orthoptera): clinal variation along an altitudinal gradient. Heredity, 62: 107–112.
  • Confalonieri V.A., 1992—B-chromosomes of Trimerotropis pallidipennis (Oedipodinae: Acrididae): new effects on chiasma conditions. Caryologia, 45: 145–153.
  • Confalonieri V.A., 1994—Inversion polymorphism and natural selection in Trimerotropis pallidipennis: correlations with geographical variables. Hereditas, 121: 79–86.
  • Confalonieri V.A., 1995—Macrogeographic patterns in B-chromosomes and inversion polymorphisms of the grasshopper Trimerotropis pallidipennis. Gén. Sel. Evol., 27: 305–311.
  • Confalonieri V.A., Scataglini A.A. and Remis M.I., 2002—Sequence differentiation among inversion rearrangements are revealed by RAPD markers in the grasshopper Trimerotropis pallidipennis (Orthoptera). Annals Entomol. Soc. America, 95: 201–207.
  • Danevan-Mingot M.L., Campo N., Ritzenthaler P. and Le Bougeois P., 1998—A natural large chromosome inversion in Lactococcus lactis is mediated by homologous recombination between two insertion sequences. J. Bacteriol., 180: 4834–4842.
  • Dimitri P. and Junakovic N., 1999—Revising the selfish DNA hypothesis: new evidence on accumulation of transposable elements in heterochromatin. Trends Genet, 15: 123–124.
  • Finnegan D.J., 1989—Eukaryotic transposable elements and genome evolution. Trends Genet., 5: 103–107.
  • Goni B, De Vaio E., Beltrami M., Leira M., Crivel M., Panzera F., Castellanos P., and Basso A., 1985—Geographic patterns of chromosomal variation in populations of the grasshopper (Trimerotropis pallidipennis) from southern Argentina. Can. J. Genet. Cytol., 27: 259–271.
  • Gray Y.H., 2000—It takes two transposons to tango: transposable-element-mediated chromosomal rearrangements. Trends Genet., 16: 461–468.
  • Halaimia-Toumi N., Casse N., Demattei M.V., Renault S., Pradier E., Bigot Y., et al.., 2004—The GC-rich Transposon Bytmar 1 from the Deep-Sea Hydrothermal Crab, Bythograea thermydron, May Encode Three Transposase Isoforms from a Single ORF. J. Mol. Evol., 59: 747–760.
  • Hewitt G.M., 1979. Animal Cytogenetics, in John B (ed.) “Insecta I. Orthoptera, vol. 3“. Gebrüder Borntraeger, Berlin, Stuttgart.
  • Hughes J.F. and Coffin J.M., 2001—Evidence for genomic rearrangements mediated by human endogenous retroviruses during primate evolution. Nat. Genet., 29: 487–489.
  • John B., 1983—The role of chromosomal change in the evolution of orthopteroid insects. In: Chromosome in the Evolution of Eukariotic Groups. Edited by Sherma, AN. Vol. I, C.R.C. Press Boca Raton, FL. pp 1–114.
  • Kidwell M.G. and Lisch D., 2000—Transposable elements and lost genome. Trends Ecol. Evol., 15: 95–99.
  • Kidwell M.G. and Lisch D., 2001—Perspective: transposable elements, parasitic DNA, and genome evolution. Evolution, 115: 49–63.
  • Kidwell M.G. 2002—Transposable elements and the evolution of genome size in eukaryotes. Genetica, 115: 49–63.
  • Kin J.M., Vanguri S., Boeke J.D., Gabriel A. and Voytas D.F., 1998—Transposable elements and genome organization: a comprehensive survey of ret-rotransposons revealed by the complete Saccharomy- ces cerevisiae genome sequence. Genome Res., 8: 464–478.
  • Lampe D.J., Whiterspoon D.J., Soto-Adames F.N. and Robertson H.M., 2003—Recent horizontal transfer of Mellifera subfamily Mariner transposon into insects lineages representing four orders shows that selection acts only during horizontal transfer. Mol. Biol. Evol., 20: 554–562.
  • Lohe A.R., Moriyama E.N., Lidholm D.A. and Hartld. L., 1995—Horizontal transmission, vertical inactivation, and stochastic loss of mariner-like transposable elements. Mol. Biol. Evol., 12: 62–72.
  • Lönnig W.E. and Saedler H., 2002—Chromosome Rearrangements and Transposable Elements. Ann. Rev. Genet., 36: 389–410.
  • Mandrioli M., 2000—Mariner-like transposable elements are interspersed within the rDNA-associated heterochromatin of the pufferfish Tetraodon fluviatilis. Chromosome Res., 8: 177–179.
  • Mandrioli M., 2003 —Identification and chromosomal localization of mariner-like elements in the cabbage moth Mamestra brassicae (Lepidoptera). Chromosome Res., 11: 319–22.
  • Matrajt M., Confalonieri V.A. and Vilardi J.C., 1996—Parallel adaptive patterns of allozyme and inversion polymorphisms on an ecological gradient. Heredity, 76: 346–354.
  • Mc Donald J.F., 1998—Transposable elements, gene silencing and macroevolution. Trends Ecol. Evol., 13: 94–95.
  • Poggio L., Confalonieri V.A., Comas C., Cuadrado N., Jouve N. and Naranjo C.A., 1999a—Genomic in situ hybridization (GISH) of Tripsacum dactyloides and Zea mays ssp. mays with B-chromo- somes. Genome, 42: 687–691.
  • Poggio L., Confalonieri V.A., Comas C., Gonzalez G. and Naranjo C.A., 1999b—Genomics affinities among Zea luxurians, Zea perennis and Zea di- ploperennis: meiotics behaviour in the F1 and genomics in situ hybridization (GISH). Genome, 42: 993–1000.
  • Reiss, R.A., Schwert D.P. and Ashworth A.C., 1995—Field preservation of Coleoptera for molecular genetic analyses. Environ. Entomol., 24 (3): 716–719.
  • Richards S., Liu Y., Bettencourt B.R., Hradecky P., Letovsky S., Nielsen R., Thornton K., Hubisz M. J., Chen R., Meisel R. P., Couronne O., Hua S., Smith M. A., Zhang P., Liu J., Busse-Maker H. J., Van Batenburg M. F., Howells S. L., Scherer S. E., Sodergren E., Matthews B. B., Crosby M. A., Schroeder A. J., Ortiz-Barri-Entos D., Rives C. M., Metzker M. L., Muzny D. M., Scott G., Steffen D., Wheeler D. A., Worley K. C., Havlak P., Durbin K. J., Egan A., Gill R., Hume J., Morgan M. B., Miner G., Hamilton C., Huang Y., Waldron L., Verduzco D., Clerc-Blankenburg K. P., Dubchak I., Noor M. A. F., Anderson W., White K. P., Clark A. G., Schaeffer S. W., Gelbart W., Weinstock G. M. and Gibbs R. A., 2005—Comparative genome sequencing of Drosophila pseudoob-scura: Chromosomal, gene, and cis-element evolution. Genome Res., 15: 1–18.
  • Rizzon C., Marais G., Gouy M. and Biemont C., 2002—Recombination rate and the distribution of transposable elements in the Drosophila melanogaster genome. Genome Res., 12: 400–407.
  • Robertson H.M., 1993—The mariner transposable element is widespread in insects. Nature, 362: 241–245.
  • Robertson H.M. and Lampe D.J., 1995—Distribution of transposable elements in arthropods. Ann. Rev. Entomol., 40: 333–357.
  • Robertson H. M., Soto-Adames F. N., Walden K. K. O., Avancini R. M. P. and Lampe D. J., 1998 —The mariner transposons of animals: horizontally jumping genes. In M. Syvanen and C. I. Kado (Eds) “Horizontal gene transfer”. p. 268–284). Chapman and Hall, London.
  • Rozen S. and Skaletsky H. J., 2000—Primevi on the WWW for general users and for biologist programmers. In Krawetz S. and Misener S. (Eds) “Bioinfor- matics Methods and Protocols: Methods in Molecular Biology”, p. 365–386. Humana Press, Totowa, NJ.
  • Sanchez V. and Confalonieri V.A., 1993—Chromosome banding pattern in Trimerotropis pallidipennis (Orthoptera: Acrididae). Cytobios, 73: 105–110.
  • Sharp P.M. and Matassi G., 1994—Codon usage and genome evolution. Curr. Opin. Genet. Dev., 4: 851–860.
  • Sheen F., Lim J.K. and Simmons M.J., 1993—Genetic instability in Drosophila melanogaster mediated by hobo transposable elements. Genetics, 133: 315–334.
  • Thompson, J.D., D.G. Higgins & T.J. Gibson, 1994—CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res., 22: 4673–4680.
  • Vaio E., De Goni B. and Rey C., 1979—Chromosome polymorphisms in population of the grasshopper Trimerotropis pallidipennis from Southern Argentina. Chromosoma, 71: 371–386.
  • White M., 1973—Animal cytology and evolution 3 re Ed. Cambridge Univ. Press: London.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.