907
Views
67
CrossRef citations to date
0
Altmetric
Original Articles

Gas-Phase Reaction in Nanoaluminum Combustion

, , &
Pages 842-857 | Received 29 Apr 2009, Accepted 16 Sep 2009, Published online: 07 Jul 2010

REFERENCES

  • Aita , K. , Glumac , N. , Vanka , S. , and Krier , H. 2006 . Modeling the combustion of nano-sized aluminum particles . 44th AIAA Aerospace Sciences Meeting and Exhibit Paper 2006-1156 .
  • Bazyn , T. , Krier , H. , and Glumac , N. 2005 . Oxidizer and pressure effects on the combustion of 10-µm aluminum particles . J. Propul. Power , 21 , 577 .
  • Bazyn , T. , Krier , H. , and Glumac , N. 2006a . Combustion of nanoaluminum at elevated pressure and temperature behind reflected shock waves . Combust. Flame , 145 , 703 .
  • Bazyn , T. 2006b . Spectroscopic measurements using a heterogeneous shock tube . Doctoral dissertation, University of Illinois, Urbana, IL .
  • Bazyn , T. , Krier , H. , and Glumac , N. 2007a . Evidence for the transition from the diffusion-limit in aluminum particle combustion . Proc. Combust. Inst. , 31 , 2021 .
  • Bazyn , T. , Glumac , N. , Krier , H. , Ward , T. , Schoenitz , M. , and Dreizin , E. 2007b . Reflected shock ignition and combustion of aluminum and nanocomposite thermite powders . Combust. Sci. Technol. , 179 , 457 .
  • Beckstead , M. 2005 . Correlating aluminum burning times . Combust., Explos., and Shock Waves , 41 , 533 .
  • Brooks , K. , and Beckstead , M. 1995. Dynamics of aluminum combustion. J. Prop. Power , 11, 769.
  • Bucher , P. , Yetter , R. , Dryer , F. , Parr , T. , and Hanson-Parr , D. 1998 . PLIF species and ratiometric temperature measurements of aluminum particle combustion in O2, CO2, and N2O oxidizers, and comparison with model calculations . Proc. Combust. Instit. , 27 , 2421 .
  • Bucher , P. , Yetter , R.A. , Dryer , F.L. , and Vicenzi , E.P. 1999 . Condensed-phase species distributions about Al particles reacting in various oxidizers . Combust. Flame , 117 , 351 .
  • Campbell , T. , Kalia , R. , Nakano , A. , Vashishta , P. , Ogata , S. , and Rodgers , S. 1999 . Dynamics of oxidation of aluminum nanoclusters using variable charge molecular-dynamics simulations on parallel computers . Phys. Rev. Ltrs. , 82 , 4866 .
  • Dreizin , E. 1996 . Experimental study of stages in aluminum particle combustion in air . Combust. Flame , 105 , 541 .
  • Farrell , H.H. , and Van Siclen , C.D. 2007 . Binding energy, vapor pressure, and melting point of semiconductor nanoparticles . J. Vac. Sci. Tech. B , 25 , 1441 .
  • Friedman , R. , and Macek , A. 1962 . Ignition and combustion of aluminum particles in hot ambient gases . Combust. Flame , 6 , 9 .
  • Glassman , I. 1996 . Combustion, , 3rd ed. , Academic Press , San Diego , CA .
  • Glumac , N. , Krier , H. , Bazyn , T. , and Eyer , R. 2005 . Temperature measurements of aluminum particles burning in carbon dioxide . Combust. Sci. and Technol. , 177 , 485 .
  • Goroshin , S. , Mamen , J. , Higgins , A. , Bazyn , T. , Glumac , N. , and Krier , H. 2007 . Emission spectroscopy of flame fronts in aluminum suspensions . Proc. Combust. Inst. , 31 , 2011 .
  • Huang , Y. , Risha , G.A. , Yang , V. , and Yetter , R.A. 2005 . Analysis of nano-aluminum particle dust cloud combustion in different oxidizer environments . 43rd AIAA Aerospace Sciences Meeting and Exhibit AIAA-2005-0738 .
  • Levenspiel , O. 1999 . Chemical Reaction Engineering, , 3rd ed. , Wiley , New York .
  • Levitas , V. , Asay , B. , Son , S. , and Pantoya , M. 2007 . Mechanochemical mechanism for fast reaction of metastable intermolecular composites based on dispersion of liquid metal . J. App. Phys. , 101 , 083524 .
  • Levitas , V. , Pantoya , M. , and Dikici , B. 2008 . Melt dispersion versus diffusive oxidation mechanism for aluminum nanoparticles: Critical experiments and controlling parameters . App. Phys. Ltrs. , 92 , 011921 .
  • Lynch , P. , Glumac , N. , and Krier , H. 2007 . Combustion of 5-µm aluminum particles in high temperature, high pressure, water vapor environments . 43rd AIAA Joint Propulsion Conference & Exhibit Cincinnati , OH, AIAA-2007-5643 .
  • Lynch , P. , Krier , H. , and Glumac , N. 2009 . A correlation for burn time of aluminum particles in the transition regime . Proc. Combust. Inst. , 32 , 1887 .
  • Melcher , J.C. , Krier , H. , and Burton , R.L. 2002 . Burning aluminum particles inside a laboratory-scale solid rocket motor . J. Prop. Power , 18 , 631 .
  • Olsen , S. , and Beckstead , M. 1996 . Burn time measurements of single aluminum particles in steam and carbon dioxide mixtures . J. Prop. Power , 12 , 662 .
  • Park , K. , Lee , D. , Rai , A. , Mukherjee , D. , and Zachariah , M.R. 2005 . Size-resolved kinetic measurements of aluminum nanoparticle oxidation with single particle mass spectrometry . J. Phys. Chem. B , 109 , 7290 .
  • Poletaev , N. , and Florko , A. 2008 . Spectral studies of the gas component of an aluminum dust flame . Combust., Explos., and Shock Waves , 44 , 437 .
  • Rai , A. , Park , K. , Zhou , L. , and Zachariah , M.R. 2006 . Understanding the mechanism of aluminum nanoparticle oxidation . Combust. Theory Modeling , 10 , 843 .
  • Roberts , T.A. , Burton , R.L. , and Krier , H. 1993 . Ignition and combustion of aluminum/magnesium alloy particles in O2 at high pressures . Combust. Flame , 92 , 125 .
  • Servaites , J. , Krier , H. , Melcher , J.C. , and Burton , R.L. 2001. Ignition and combustion of aluminum particles in shocked H2O/O2/Ar and CO2/O2/Ar mixtures. Combust. Flame , 125, 1040.
  • Trunov , M. , Schoenitz , M. , and Dreizin , E. 2005 . Ignition of aluminum under different experimental conditions . Propel., Explos., Pyrotech. , 30 , 36 .
  • Washburn , E. , Trivedi , J. , Catoire , L. , and Beckstead , M. 2008 . The simulation of the combustion of micrometer-sized aluminum particles with steam . Combust. Sci. Tech. , 180 , 1502 .
  • Watson , K. , Pantoya , M. , and Levitas , V. 2008 . Fast reactions with nano- and micrometer aluminum: A study on oxidation versus fluorination . Combust. Flame , 155 , 619 .
  • Yagi , S. , and Kunii , D. 1961 . Fluidized-solids reactors with continuous solids feed—I: Residence time of particles in fluidized beds . Chem. Eng. Sci. , 16 , 364 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.