786
Views
20
CrossRef citations to date
0
Altmetric
Original Articles

Chemical Kinetic Mechanism of a Three-Component Fuel Composed of Iso-octane/n-Heptane/Ethanol

&
Pages 627-644 | Received 19 Jul 2012, Accepted 09 Oct 2012, Published online: 29 Mar 2013

REFERENCES

  • Andrae , J.C.G. 2008 . Development of a detailed kinetic model for gasoline surrogate fuels . Fuel , 87 , 2013 – 2022 .
  • Andrae , J.C.G. , and Head , R.A. 2009 . HCCI experiments with gasoline surrogate fuels modeled by a semidetailed chemical kinetic model . Combust. Flame , 156 , 842 – 851 .
  • Andrae , J. , Johansson , D. , Björnbom , P. , Risberg , P. , and Kalghatgi , G. 2005 . Co-oxidation in the auto-ignition of primary reference fuels and n-heptane/toluene blends . Combust. Flame , 140 , 267 – 286 .
  • Bakali , A.E. , Delfau , J.L. , and Vovelle , C. 1998 . Experimental study of 1 atmosphere, rich, premixed n-heptane and iso-octane flames . Combust. Sci. Technol , 140 , 69 – 91 .
  • Battin-Leclerc , F. 2008 . Detailed chemical kinetic models for the low-temperature combustion of hydrocarbons with application to gasoline and diesel fuel surrogates . Prog. Energy Combust. Sci. , 34 , 440 – 498 .
  • Berta , P. , Aggarwal , S.K. , and Puri , I.K. 2006 . An experimental and numerical investigation of n-heptane/air counterflow partially premixed flames and emission of NOx and PAH species . Combust. Flame , 145 , 740 – 764 .
  • Chen , Z. , Tang , C. , Fu , J. , Jiang , X. , Li , Q. , Wei , L. , and Huang , Z. 2012. Experimental and numerical investigation on diluted DME flames: Thermal and chemical kinetic effects on laminar flame speeds. Fuel , 102, 567–573.
  • Ciezki , H.K. , and Adomeit , G. 1993 . Shock-tube investigation of self-ignition of n-heptane–air mixtures under engine relevant conditions . Combust. Flame , 93 , 421 – 433 .
  • Cox , R.A. , and Cole , J.A. 1985 . Chemical aspects of the autoignition of hydrocarbon–air mixtures . Combust. Flame , 60 , 109 – 123 .
  • Curran , H.J. , Gaffuri , P. , Pitz , W.J. , and Westbrook , C.K. 2002 . A comprehensive modeling study of iso-octane oxidation . Combust. Flame , 129 , 253 – 280 .
  • Curran , H.J. , Pitz , W.J. , Westbrook , C.K. , Callahan , G.V. , and Dryer , F.L. 1998 . Oxidation of automotive primary reference fuels at elevated pressures . Symp. (Int.) Combust. , 27 , 379 – 387 .
  • Dagaut , P. , Boettner , J.-C. , and Cathonnet , M. 1996 . Chemical kinetic study of dimethylether oxidation in a jet stirred reactor from 1 to 10 ATM: Experiments and kinetic modeling . Symposium (International) on Combust. , 26 , 627 – 632 .
  • Dagaut , P. , Cathonnet , M. , McGuinness , M. , and Simmie , J.M. 1997 . The ignition of oxetane in shock waves and oxidation in a jet-stirred reactor: An experimental and kinetic modeling study . Combust. Flame , 110 , 409 – 417 .
  • Davidson , D.F. , Oehlschlaeger , M.A. , Herbon , J.T. , and Hanson , R.K. 2002 . Shock tube measurements of iso-octane ignition times and OH concentration time histories . Proc. Combust. Inst. , 29 , 1295 – 1301 .
  • Davis , S.G. , Law , C.K. , and Wang , H. 1999 . Propene pyrolysis and oxidation kinetics in a flow reactor and laminar flames . Combust. Flame , 119 , 375 – 399 .
  • Di Sante , R. 2012 . Measurements of the auto-ignition of n-heptane/toluene mixtures using a rapid compression machine . Combust. Flame , 159 , 55 – 63 .
  • Dunphy , M.P. , and Simmie , J.M. 1991 . High-temperature oxidation of ethanol, part 1: Ignition delays in shock waves . J. Chem. Soc., Faraday Trans. , 87 , 1691 – 1696 .
  • Fieweger , K. , Blumenthal , R. , and Adomeit , G. 1997 . Self-ignition of S.I. engine model fuels: A shock tube investigation at high pressure . Combust. Flame , 109 , 599 – 619 .
  • Fikri , M. , Herzler , J. , Starke , R. , Schulz , C. , Roth , P. , and Kalghatgi , G.T. 2008 . Autoignition of gasoline surrogates mixtures at intermediate temperatures and high pressures . Combust. Flame , 152 , 276 – 281 .
  • Halstead , M.P. , Kirsch , L.J. , and Quinn , C.P. 1977 . The autoignition of hydrocarbon fuels at high temperatures and pressures—Fitting of a mathematical model . Combust. Flame , 30 , 45 – 60 .
  • Herzler , J. , Jerig , L. , and Roth , P. 2005 . Shock tube study of the ignition of lean n-heptane/air mixtures at intermediate temperatures and high pressures . Proc. Combust. Inst , 30 , 1147 – 1153 .
  • Hori , M. , Yamamoto , A. , Nakamura , H. , Tezuka , T. , Hasegawa , S. , and Maruta , K. 2012 . Study on octane number dependence of PRF/air weak flames at 1–5 atm in a microflow reactor with a controlled temperature profile . Combust. Flame , 159 , 959 – 967 .
  • Kee , R.J. , Rupley , F.M. , and et al. . 2006 . CHEMKIN Release 4.1 , Reaction Design , San Diego , CA .
  • Lemaire , R. , Therssen , E. , and Desgroux , P. 2010 . Effect of ethanol addition in gasoline and gasoline–surrogate on soot formation in turbulent spray flames . Fuel , 89 , 3952 – 3959 .
  • Leplat , N. , Dagaut , P. , Togbé , C. , and Vandooren , J. 2011 . Numerical and experimental study of ethanol combustion and oxidation in laminar premixed flames and in jet-stirred reactor . Combust. Flame , 158 , 705 – 725 .
  • Lu , T. , and Law , C.K. 2006 . Linear time reduction of large kinetic mechanisms with directed relation graph: n-Heptane and iso-octane . Combust. Flame , 144 , 24 – 36 .
  • Machado , G.B. , Barros , J.E.M. , Braga , S.L. , Braga , C.V.M. , de Oliveira , E.J. , da Silva , A.H.M.d.F.T. , and Carvalho , L.d.O. 2011. Investigations on surrogate fuels for high-octane oxygenated gasolines. Fuel , 90, 640–646.
  • Marinov , N.M. 1999 . A detailed chemical kinetic model for high-temperature ethanol oxidation . Int. J. Chem. Kinetics , 31 , 183 – 220 .
  • Maurya , R.K. , and Agarwal , A.K. 2011 . Experimental study of combustion and emission characteristics of ethanol fuelled port injected homogeneous charge compression ignition (HCCI) combustion engine . Appl. Energy , 88 , 1169 – 1180 .
  • Mehl , M. , Pitz , W.J. , Westbrook , C.K. , and Curran , H.J. 2011 . Kinetic modeling of gasoline surrogate components and mixtures under engine conditions . Proc. Combust. Inst , 33 , 193 – 200 .
  • Minetti , R. , Carlier , M. , Ribaucour , M. , Therssen , E. , and Sochet , L.R. 1995 . A rapid compression machine investigation of oxidation and auto-ignition of n-heptane: Measurements and modeling . Combust. Flame , 102 , 298 – 309 .
  • Mittal , G. , Raju , M.P. , and Sung , C.-J. 2008 . Computational fluid dynamics modeling of hydrogen ignition in a rapid compression machine . Combust. Flame , 155 , 417 – 428 .
  • Patel , A. , Kong , S.C. , and Reitz , R.D. 2004 . Development and validation of a reduced reaction mechanism for HCCI engine simulations. (SAE Tech. Paper Series, 2004-01-0558).
  • Qin , Z. , Lissianski , V.V. , Yang , H. , Gardiner , W.C. , Davis , S.G. , and Wang , H. 2000 . Combustion chemistry of propane: A case study of detailed reaction mechanism optimization . Proc. Combust. Inst. , 28 , 1663 – 1669 .
  • Ra , Y. , and Reitz , R.D. 2008 . A reduced chemical kinetic model for IC engine combustion simulations with primary reference fuels . Combust. Flame , 155 , 713 – 738 .
  • Seiser , R. , Pitsch , H. , Seshadri , K. , Pitz , W.J. , and Gurran , H.J. 2000 . Extinction and autoignition of n-heptane in counterflow configuration . Proc. Combust. Inst , 28 , 2029 – 2037 .
  • Smith , G.P. , Golden , D.M. , Frenklach , M. , Moriarty , N.W. , Eiteneer , B. , Goldenberg , M. , Bowman , C.T. , Hanson , R.K. , Song , S. , Gardiner , W.C. , Lissianski , V.V. , and Qin , Z. 2009 . GRI-MechHome Page. http://www.me.berkeley.edu/grimech (accessed 25 Nov. 2009).
  • Stahl , G. , and Warnatz , J. 1991 . Numerical investigation of time-dependent properties and extinction of strained methane and propane–air flamelets . Combust. Flame , 85 , 285 – 299 .
  • Tan , Y. , Dagaut , P. , Cathonnet , M. , Claude Boettner , J. , Sylvain Bachman , J. , and Carlier , P. 1994 . Natural gas and blends oxidation and ignition: Experiments and modeling . Symp. (Int.) Combust. , 25 , 1563 – 1569 .
  • Tanaka , S. , Ayala , F. , and Keck , J.C. 2003 . A reduced chemical kinetic model for HCCI combustion of primary reference fuels in a rapid compression machine . Combust. Flame , 133 , 467 – 481 .
  • Tsurushima , T. 2009 . A new skeletal PRF kinetic model for HCCI combustion . Proc. Combust. Inst. , 32 , 2835 – 2841 .
  • van Lipzig , J.P.J. , Nilsson , E.J.K. , de Goey , L.P.H. , and Konnov , A.A. 2011 . Laminar burning velocities of n-heptane, iso-octane, ethanol, and their binary and tertiary mixtures . Fuel , 90 , 2773 – 2781 .
  • Westbrook , C.K. , Mizobuchi , Y. , Poinsot , T.J. , Smith , P.J. , and Warnatz , J. 2005 . Computational combustion . Proc. Combust. Inst. , 30 , 125 – 157 .
  • Zheng , D. , and Zhong , B.J. 2012 . Chemical kinetic model for ignition of three-component fuel including iso-octane/n-heptane/ethanol . Acta Phys.-Chim. Sin. , 28 , 2029 – 2036 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.