503
Views
42
CrossRef citations to date
0
Altmetric
Original Articles

The Effect of Conjugate Heat Transfer on Soot Formation Modeling at Elevated Pressures

, &
Pages 1799-1819 | Received 16 Jun 2013, Accepted 28 Aug 2013, Published online: 04 Nov 2013

REFERENCES

  • Appel , J. , Bockhorn , H. , and Frenklach , M. 2000 . Kinetic modeling of soot formation with detailed chemistry and physics: Laminar premixed flames of c2 hydrocarbons . Combust. Flame , 121 ( 1–2 ), 122 – 136 .
  • Bockhorn , H. 1994 . Soot Formation in Combustion: Mechanisms and Models , Springer-Verlag , Berlin .
  • Brown , N.J. , Revzan , K.L. , and Frenklach , M. 1998 . Detailed kinetic modeling of soot formation in ethylene/air mixtures reacting in a perfectly stirred reactor . Proc. Combust. Inst. , 27 , 1573 – 1580 .
  • Charest , M.R.J. 2010 . Numerical modelling of sooting laminar diffusion flames at elevated pressures and microgravity. PhD thesis, University of Toronto, Toronto, Canada.
  • Charest , M.R.J. , Groth , C.P.T. , and Gülder , Ö.L. 2011a . Effects of gravity and pressure on laminar coflow methane-air diffusion flames at pressures from 1 to 60 atmospheres . Combust. Flame , 158 ( 5 ), 860 – 875 .
  • Charest , M.R.J. , Groth , C.P.T. , and Gülder , Ö.L. 2011b . A numerical study on the effects of pressure and gravity in laminar ethylene diffusion flames . Combust. Flame , 158 ( 10 ), 1933 – 1945 .
  • Charest , M.R.J. , Joo , H.I. , Gülder , Ö.L. , and Groth , C.P.T. 2011c . Experimental and numerical study of soot formation in laminar ethylene diffusion flames at elevated pressures from 10 to 35 atm . Proc. Combust. Inst. , 33 , 549 – 557 .
  • Chernov , V. , Zhang , Q. , Thomson , M.J. , and Dworkin , S.B. 2012 . Numerical investigation of soot formation mechanisms in partially-premixed ethylene-air co-flow flames . Combustion and Flame , 159 , 2789 – 2798 .
  • Dworkin , S.B. , Bennett , B.A.V. , and Smooke , M.D. 2006. A mass-conserving vorticity-velocity formulation with application to nonreacting and reacting flows. J. Comput. Phys. , 215, 430–447.
  • Dworkin , S.B. , Connelly , B.C. , Schaffer , A.M. , Bennett , B.A.V. , Long , M.B. , Smooke , M.D. , Puccio , M.P. , McAndrews , B. , and Miller , J.H. 2007 . Computational and experimental study of a forced, time-dependent, methane-air coflow diffusion flame . Proc. Combust. Inst. , 31 , 971 – 978 .
  • Dworkin , S.B. , Cooke , J.A. , Bennett , B.A.V. , Connelly , B.C. , Long , M.B. , Smooke , M.D. , Hall , R.J. , and Colket , M.B. 2009a . Distributed-memory parallel computation of a forced, time-dependent, sooting, ethylene/air coflow diffusion flame . Combust. Theor. Model. , 13 ( 5 ), 795 – 822 .
  • Dworkin , S.B. , Schaffen , A.M. , Connelly , B.C. , Long , M.B. , Smooke , M.D. , Puccio , M.A. , McAndrew , B. , and Miller , J.H. 2009b . Measurements and calculations of formaldehyde concentrations in a methane/n2/air, non-premixed flame: Implications for heat release rate . Proc. Combust. Inst. , 32 , 1311 – 1318 .
  • Dworkin , S.B. , Smooke , M.D. , and Giovangigli , V. 2009c . The impact of detailed multicomponent transport and thermal diffusion effects on soot formation in ethylene/air flames . Proc. Combust. Inst. , 32 , 1165 – 1172 .
  • Dworkin , S.B. , Zhang , Q. , Thomson , M.J. , Slavinskaya , N.A. , and Riedel , U. 2011 . Application of an enhanced PAH growth model to soot formation in a laminar coflow ethylene/air diffusion flame . Combust. Flame , 158 ( 9 ), 1682 – 1695 .
  • Eaves , N.A. , Veshkini , A. , Riese , C. , Zhang , Q. , Dworkin , S.B. , and Thomson , M.J. 2012 . A numerical study of high pressure, laminar, sooting, ethane-air coflow diffusion flames . Combust. Flame , 159 ( 10 ), 3179 – 3190 .
  • Fairweather , M. , Jones , W.P. , Ledin , H.S. , and Lindstedt , R.P. 1992 . Predictions of soot formation in turbulent, non-premixed propane flames . Proc. Combust. Inst. , 24 , 1067 – 1074 .
  • Frenklach , M. , and Wang , H. 1991 . Detailed modeling of soot particle nucleation and growth . Proc. Combust. Inst. , 23 , 1559 – 1566 .
  • Gropp , W. , Lusk , E. , and Thakur , R. 1999 . Using MPI-2: Advanced Features of the Message Passing Interface , The MIT Press , Cambridge , MA .
  • Guo , H. , Liu , F. , Smallwood , G.J. , and Gülder , O.L. 2002 . The flame preheating effect on numerical modelling of soot formation in a two-dimensional laminar ethylene-air diffusion flame . Combust. Theor. Model. , 6 ( 2 ), 173 – 187 .
  • Hansen , J. , and Nazarenko , L. 2004 . Soot climate forcing via snow and ice albedos . Proc. Nat. Acad. Sci. USA , 101 ( 2 ), 423 – 428 .
  • Haynes , B.S. , and Wagner , G.H. 1981 . Soot formation . Prog. Energy Combust. Sci. , 7 ( 4 ), 229 – 273 .
  • House , J.M. , Beckermann , C. , and Smith , T.F. 1990 . Effect of a centered conducting body on natural convection heat transfer in an enclosure . Numer. Heat Transfer, Part A , 18 ( 2 ), 213 – 225 .
  • Kazakov , A. , and Frenklach , M. 1998 . Dynamic modeling of soot particle coagulation and aggregation: Implementation with the method of moments and application to high-pressure laminar premixed flames . Combust. Flame , 114 ( 3–4 ): 484 – 501 .
  • Kazakov , A. , Wang , H. , and Frenklach , M. 1995 . Detailed modeling of soot formation in laminar premixed ethylene flames at a pressure of 10 bar . Combust. Flame , 100 ( 1–2 ), 111 – 120 .
  • Kee , R. , Dixon-Lewis , J. , Warnatz , J. , Coltrin , M. , and Miller , J. 1986 . A FORTRAN computer code package for the evaluation of gas-phase multicomponent transport properties . Technical Report SAN86-8246, Sandia.
  • Kee , R. , Miller , J. , and Jefferson , T. 1980 . Chemkin: A general purpose, problem independent, transportable, fortran chemical kinetics code package . Technical Report SAN80-8003, Sandia.
  • Kee , R. , Rupley , F. , and Miller , J. 1989. A fortran chemical kinetics package for the analysis of gas-phase chemical kinetics. Technical Report SAN89-8009, Sandia.
  • Kee , R. , Warnatz , J. , and Miller , J. 1983 . A fortran computer code package for the evaluation of gas-phase viscosities, conductivities, and diffusion coefficients . Technical Report SAN82-8209, Sandia.
  • Kumar Das , M. , and Reddy , K.S.K. 2006 . Conjugate natural convection heat transfer in an inclined square cavity containing a conducting block . Int. J. Heat Mass Transfer , 49 ( 25–26 ), 4987 – 5000 .
  • Leung , K.M. , Lindstedt , R.P. , and Jones , W.P. 1991 . A simplified reaction mechanism for soot formation in nonpremixed flames . Combust. Flame , 87 ( 3–4 ), 289 – 305 .
  • Liu , F. , Dworkin , S.B. , Thomson , M.J. , and Smallwood , G.J. 2012 . Modeling DME addition effects to fuel on PAH and soot in laminar coflow ethylene/air diffusion flames using two PAH mechanisms . Combust. Sci. Technol. , 184 ( 7–8 ), 966 – 979 .
  • Liu , F. , Guo , H. , and Smallwood , G.J. 2004 . Effects of radiation model on the modeling of a laminar coflow methane/air diffusion flame . Combust. Flame , 138 ( 1–2 ), 136 – 154 .
  • Liu , F. , Smallwood , G.J. , and Gülder , Ö.L. 2000 . Band lumping strategy for radiation heat transfer calculations using a narrowband model . J. Thermophys. Heat Transfer , 14 ( 2 ), 278 – 281 .
  • Liu , F. , Thomson , K.A. , Guo , H. , and Smallwood , G.J. 2006 . Numerical and experimental study of an axisymmetric coflow laminar methane-air diffusion flame at pressures between 5 and 40 atmospheres . Combust. Flame , 146 ( 3 ), 456 – 471 .
  • Mandatori , P. 2006 . Soot formation in ethane-air coflow laminar diffusion flames at elevated pressures. Master's thesis, University of Toronto, Toronto, Canada.
  • Mandatori , P.M. , and Gülder , Ö.L. 2011 . Soot formation in laminar ethane diffusion flames at pressures from 0.2 to 3.3 mpa . Proc. Combust. Inst. , 33 , 577 – 584 .
  • Park , S.H. , and Rogak , S.N. 2004 . A novel fixed-sectional model for the formation and growth of aerosol agglomerates . J. Aerosol Sci. , 35 ( 11 ), 1385 – 1404 .
  • Park , S.H. , Rogak , S.N. , Bushe , W.K. , Wen , J.Z. , and Thomson , M.J. 2005 . An aerosol model to predict size and structure of soot particles . Combust. Theor. Model. , 9 ( 3 ), 499 – 513 .
  • Patankar , S.V. 1979 . A numerical method for conduction in composite materials, flow in irregular geometries and conjugate heat transfer. Presented at the International Heat Transfer Conference, Toronto, August 7–11 .
  • Patankar , S.V. 1980 . Numerical Heat Transfer and Fluid Flow , Hemisphere , New York .
  • Puri , R. , Richardson , T.F. , Santoro , R.J. , and Dobbins , R.A. 1993 . Aerosol dynamic processes of soot aggregates in a laminar ethene diffusion flame . Combust. Flame , 92 ( 3 ), 320 – 333 .
  • Sabbah , H. , Biennier , L. , Klippenstein , S.J. , Sims , I.R. , and Rowe , B.R. 2010 . Exploring the role of PAHs in the formation of soot: Pyrene dimerization . J. Phys. Chem. Lett. , 1 ( 19 ), 2962 – 2967 .
  • Saffaripour , M. , Kholghy , M. , Zhang , Q. , Dworkin , S. , and Thomson , M.J. 2013 . A numerical and experimental study of soot formation in a laminar coflow diffusion flame of a jet a-1 surrogate . Proc. Combust. Inst. , 34 , 1057 – 1065 .
  • Saffaripour , M. , Zabeti , P. , Dworkin , S.B. , Zhang , Q. , Guo , H. , Liu , F. , Smallwood , G.J. , and Thomson , M.J. 2011 . A numerical and experimental study of a laminar sooting coflow jet-a1 diffusion flame . Proc. Combust. Inst. 33 , 601 – 608 .
  • Slavinskaya , N.A. , and Frank , P. 2009 . A modelling study of aromatic soot precursors formation in laminar methane and ethene flames . Combust. Flame , 156 ( 9 ), 1705 – 1722 .
  • Slavinskaya , N.A. , Riedel , U. , Dworkin , S.B. , and Thomson , M.J. 2012 . Detailed numerical modeling of PAH formation and growth in non-premixed ethylene and ethane flames . Combust. Flame , 159 ( 3 ), 979 – 995 .
  • Smooke , M.D. , Long , M.B. , Connelly , B.C. , Colket , M.B. , and Hall , R.J. 2005 . Soot formation in laminar diffusion flames . Combust. Flame , 143 ( 4 ), 613 – 628 .
  • Smooke , M.D. , McEnally , C.S. , Pfefferle , L.D. , Hall , R.J. , and Colket , M.B. 1999. Computational and experimental study of soot formation in a coflow, laminar diffusion flame. Combust. Flame , 117(1–2), 117–139.
  • Thomson , K.A. , Gülder , Ö.L. , Weckman , E.J. , Fraser , R.A. , Smallwood , G.J. , and Snelling , D.R. 2005 . Soot concentration and temperature measurements in co-annular, nonpremixed CH4/air laminar flames at pressures up to 4 mpa . Combust. Flame , 140 ( 3 ), 222 – 232 .
  • Vedal , S. 1997 . Ambient particles and health: Lines that divide . J. Air Waste Manage. Assoc. , 47 ( 5 ), 551 – 581 .
  • Yazicioglu , A.G. , Megaridis , C.M. , Campbell , A. , Lee , K. , and Choi , M.Y. 2001 . Measurement of fractal properties of soot agglomerates in laminar coflow diffusion flames using thermophoretic sampling in conjunction with transmission electron microscopy and image processing . Combust. Sci. Technol. , 171 ( 1 ), 71 – 87 .
  • Yoshihara , Y. , Kazakov , A. , Wang , H. , and Frenklach , M. 1994 . Reudced mechanisms of soot formation—application to natural gas-fueled diesel combustion . Proc. Combust. Inst. , 25 , 941 – 948 .
  • Zhang , Q. 2009 . Detailed modeling of soot formation/oxidation in laminar coflow diffusion flames. PhD thesis, University of Toronto, Toronto, Canada.
  • Zhang , Q. , Guo , H. , Liu , F. , Smallwood , G.J. , and Thomson , M.J. 2008 . Implementation of an advanced fixed sectional aerosol dynamics model with soot aggregate formation in a laminar methane/air coflow diffusion flame . Combust. Theor. Model. , 12 ( 4 ), 621 – 641 .
  • Zhang , Q. , Guo , H. , Liu , F. , Smallwood , G.J. , and Thomson , M.J. 2009a . Modeling of soot aggregate formation and size distribution in a laminar ethylene/air coflow diffusion flame with detailed PAH chemistry and an advanced sectional aerosol dynamics model . Proc. Combust. Inst. , 32 , 761 – 768 .
  • Zhang , Q. , Thomson , M.J. , Guo , H. , Liu , F. , and Smallwood , G.J. 2009b . A numerical study of soot aggregate formation in a laminar coflow diffusion flame . Combust. Flame , 156 ( 3 ), 697 – 705 .
  • Zhang , Z. , and Ezekoye , O.A. 1998 . Soot production rate calculations at elevated pressure in a methane-air jet diffusion flame . Combust. Sci. Technol. , 137 ( 1–6 ), 323 – 346 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.