637
Views
38
CrossRef citations to date
0
Altmetric
Original Articles

Initiation and Reaction in Al/Bi2O3 Nanothermites: Evidence for the Predominance of Condensed Phase Chemistry

, , , , &
Pages 1209-1224 | Received 27 Mar 2012, Accepted 24 Mar 2014, Published online: 28 Jul 2014

REFERENCES

  • Cabrera, N., and Mott, N.F. 1948. Theory of the oxidation of metals. Rep. Prog. Phys., 12, 163–184.
  • Chowdhury, S., Sullivan, K., Piekiel, N., Zhou, L., and Zachariah, M.R. 2010. Diffusive vs. explosive reaction at the nanoscale. J. Phys. Chem. C, 114, 9191–9195.
  • Dreizin, E.L. 1999. On the mechanism of asymmetric aluminum particle combustion. Combust. Flame, 117, 841–850.
  • Dutro, G.M., Yetter, R.A., Risha, G.A., and Son, S.F. 2009. The effect of stoichiometry on the combustion behavior of a nanoscale Al/MoO3 thermite. Proc. Combust. Inst., 32, 1921–1928.
  • Ermoline, A., Stamatis, D., and Dreizin, E.L. 2012. Low-temperature exothermic reactions in fully dense Al–CuO nanocomposite powders. Thermochim. Acta, 527, 52–58.
  • Henz, B.J., Hawa, T., and Zachariah, M.R. 2010. On the role of built-in electric fields on the ignition of oxide coated nanoaluminum: Ion mobility versus Fickian diffusion. J. Appl. Phys., 107, 024901-1–024901-9.
  • Hull, S., Norberg, S.T., Tucker, M.G., Eriksson, S.G., Mohn, C.E., and Stolen, S. 2009. Neutron total scattering study of the delta and beta phases of Bi2O3. Dalton Trans., 40, 8737–8745.
  • Ivetic, T., Nikolic, M.V., Slankarnenac, M., Zivanov, M., Minic, D., Nikolic, P.M., and Ristic, M.M. 2007. Influence of Bi2O3 on microstructure and electrical properties of ZnO-SnO2 ceramics. Sci. Sintering, 39, 229–240.
  • Jian, G., Chowdhury, S., Sullivan, K., and Zachariah, M.R. 2013. Nanothermite reactions: Is gas phase oxygen generation from the oxygen carrier an essential prerequisite to ignition? Combust. Flame, 160, 432–437.
  • Kakhan, B.G., Lazarev, V.B., and Shaplygin, I.S. 1979. Subsolidus part of the equilibrium diagrams of the Bi2O3-MO binary systems (M = Ni, Cu, or Pd). Russ. J. Inorg. Chem., 24, 922–925.
  • Levitas, V.I., Asay, B.W., Son, S.F., and Pantoya, M. 2006. Melt dispersion mechanism for fast reaction of nanothermites. Appl. Phys. Lett., 89, 071909.
  • Levitas, V.I., Pantoya, M.L., and Dikici, B. 2008. Melt dispersion versus diffusive oxidation mechanism for aluminum nanoparticles: Critical experiments and controlling parameters. Appl. Phys. Lett., 92, 011921.
  • Martirosyan, K.S. 2011. Nanoenergetic gas-generators: Principles and applications. J. Mater. Chem., 21, 9400–9405.
  • Martirosyan, K.S., Wang, L., Vicent, A., and Luss, D. 2009a. Nanoenergetic gas-generators: Design and performance. Propellants Explos. Pyrotech., 34, 532–538.
  • Martirosyan, K.S., Wang, L., Vicent, A., and Luss, D. 2009b. Synthesis and performance of bismuth trioxide nanoparticles for high energy gas generator use. Nanotechnology, 20, 405609.
  • Patnaik, P. 2003. Handbook of Inorganic Chemicals, McGraw-Hill, New York.
  • Piekiel, N.W., Egan, G.C., Sullivan, K.T., and Zachariah, M.R. 2012. Evidence for the predominance of condensed phase reaction in chemical looping reactions between carbon and oxygen carriers. J. Phys. Chem. C, 116, 24496–24502.
  • Puszynski, J.A. 2009. Processing and characterization of aluminum-based nanothermites. J. Therm. Anal. Calorim., 96, 677–685.
  • Puszynski, J.A., Bulian, C.J., and Swiatkiewicz, J.J. 2007. Processing and ignition characteristics of aluminum-bismuth trioxide nanothermite system. J. Propul. Power, 23, 698–706.
  • Rai, A., Park, K., Zhou, L., and Zachariah, M.R. 2006. Understanding the mechanism of aluminium nanoparticle oxidation. Combust. Theor. Model., 10, 843–859.
  • Rosenband, V. 2004. Thermo-mechanical aspects of the heterogeneous ignition of metals. Combust. Flame, 137, 366–375.
  • Rufino, B., Boulc’h, F., Coulet, M.V., Lacroix, G., and Denoyel, R. 2007. Influence of particles size on thermal properties of aluminium powder. Acta Materialia, 55, 2815–2827.
  • Sabioni, A.C.S., Daniel, A., Ferraz, W.B., Pais, R.W.D., Huntz, A.M., and Jomard, F. 2008. Oxygen diffusion in Bi2O3-doped ZnO. Mater. Res.-Ibero-Am. J. Mater., 11, 221–225.
  • Sanders, V.E., Asay, B.W., Foley, T.J., Tappan, B.C., Pacheco, A.N., and Son, S.F. 2007. Reaction propagation of four nanoscale energetic composites (Al/MoO3, Al/WO3, Al/CuO, and Bi2O3). J. Propul. Power, 23, 707–714.
  • Satterfield, C.N. 1991. Heterogeneous Catalysis in Industrial Practice, 2nd edition, McGraw Hill, New York.
  • Shimojo, F., Nakano, A., Kalia, R.K., and Vashishta, P. 2009. Enhanced reactivity of nanoenergetic materials: A first-principles molecular dynamics study based on divide-and-conquer density functional theory. Appl. Phys. Lett., 95, 043114.
  • Shuk, P., Wiemhofer, H.D., Guth, U., Gopel, W., and Greenblatt, M. 1996. Oxide ion conducting solid electrolytes based on Bi2O3. Solid State Ionics, 89, 179–196.
  • Son, S.F., Yetter, R.A., and Yang, V. 2007. Introduction: Nanoscale composite energetic materials. J. Propul. Power, 23, 643–644.
  • Sullivan, K.T., Chiou, W.A., Fiore, R., and Zachariah, M.R. 2010. In situ microscopy of rapidly heated nano-Al and nano-Al/WO3 thermites. Appl. Phys. Lett., 97, 133104–133106.
  • Sullivan, K.T., Piekiel, N.W., Chowdhury, S., Wu, C., Zachariah, M.R., and Johnson, C.E. 2011. Ignition and combustion characteristics of nanoscale Al/AgIO3: A potential energetic biocidal system. Combust. Sci. Technol., 183, 285–302.
  • Sullivan, K.T., Piekiel, N.W., Wu, C., Chowdhury, S., Kelly, S.T., Hufnagel, T.C., Fezzaa, K., and Zachariah, M.R. 2012. Reactive sintering: An important component in the combustion of nanocomposite thermites. Combust. Flame, 159, 2–15.
  • Sullivan, K., Young, G., and Zachariah, M.R. 2009. Enhanced reactivity of nano-B/Al/CuO MICs. Combust. Flame, 156, 302–309.
  • Takahashi, T., Esaka, T., and Iwahara, H. 1977. Oxide ion conduction in sintered oxides of Moo3-doped Bi2O3. J. Appl. Electrochem., 7, 31–35.
  • Trunov, M.A., Schoenitz, M., and Dreizin, E.L. 2006. Effect of polymorphic phase transformations in alumina layer on ignition of aluminium particles. Combust. Theor. Model., 10, 603–623.
  • Wang, L., Luss, D., and Martirosyan, K.S. 2011. The behavior of nanothermite reaction based on Bi2O3/Al. J. Appl. Phys., 110, 074311.
  • Williams, R.A., Patel, J.V., Ermoline, A., Schoenitz, M., and Dreizin, E.L. 2013. Correlation of optical emission and pressure generated upon ignition of fully-dense nanocomposite thermite powders. Combust. Flame, 160, 734–741.
  • Williams, R.A., Schoenitz, M., Ermoline, A., and Dreizin, E.L. 2012. On gas release by thermally-initiated fully-dense 2Al:3CuO nanocomposite powder. Int. J. Energetic Mater. Chem. Propul., 11, 275–292.
  • Zhdanov, V.P., and Kasemo, B. 2008. Cabrera-Mott kinetics of oxidation of nm-sized metal particles. Chem. Phys. Lett., 452, 285–288.
  • Zhou, L., Piekiel, N., Chowdhury, S., Lee, D., and Zachariah, M.R. 2009a. Transient ion ejection during nanocomposite thermite reactions. J. Appl. Phys., 106, 083306.
  • Zhou, L., Piekiel, N., Chowdhury, S., and Zachariah, M.R. 2009b. T-Jump/time-of-flight mass spectrometry for time-resolved analysis of energetic materials. Rapid Commun. Mass Spectrom., 23, 194–202.
  • Zhou, L., Piekiel, N., Chowdhury, S., and Zachariah, M.R. 2010. Time-resolved mass spectrometry of the exothermic reaction between nanoaluminum and metal oxides: The role of oxygen release. J. Phys. Chem. C, 114, 14269–14275.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.