681
Views
22
CrossRef citations to date
0
Altmetric
Original Articles

Large Eddy Simulation of Mild Combustion Using PDF-Based Turbulence–Chemistry Interaction Models

, &
Pages 1138-1165 | Received 05 Jul 2013, Accepted 16 Apr 2014, Published online: 28 Jul 2014

REFERENCES

  • Aminian, J., Galletti, C., Shahhosseini, S., and Tognotti, L. 2012. Numerical investigation of a MILD combustion burner: Analysis of mixing field, chemical kinetics and turbulence chemistry-interaction. Flow Turbulence Combust., 88, 597–623.
  • ANSYS Fluent 13.0. 2010, November. Ansys Inc., Canonsburg, PA, USA (www.ansys.com).
  • Cao, R.R., Pope, S.B., and Masri, A.R. 2005. Turbulent lifted flames in a vitiated co-flow investigated using joint PDF calculations. Combust. Flame, 142, 438–453.
  • Cao, R.R., Wang, H., and Pope, S.B. 2007. The effect of mixing models in PDF calculations of piloted jet flames. Proc. Combust. Inst., 31, 1543–1550.
  • Cabra, R., Chen, J.Y., Dibble, R.W., Karpetis, A.N., and Barlow, R.S. 2005. Lifted methane-air jet flames in a vitiated coflow. Combust. Flame, 143, 491–506.
  • Cabra, R., Myhrvold, T., Chen, J.-Y., Dibble, R.W., Karpetis, A.N., and Barlow, R.W. 2002. Simultaneous laser Raman-Rayleigh-Lif measurements and numerical modelling results of a lifted turbulent H2/N2 jet flame in a vitiated coflow. Proc. Combust. Inst., 29, 1881–1888.
  • Cavaliere, A., and de Joannon, M. 2004. Mild combustion. Prog. Energy Combust. Sci., 30, 329–366.
  • Celik, I., Cehreli, Z., and Yavuz, I. 2005. Index of resolution quality for large eddy simulation.J. Fluids Eng., 127, 949–958.
  • Christo, F.C., and Dally, B.B. 2004. Application of transport pdf approach for modelling mild combustion. In Proceedings of the Fifteenth Australian Fluid Mechanic Conference, University of Sydney, Sydney, Australia, December 13–17.
  • Christo, F.C., and Dally, B.B. 2005. Modelling turbulent reacting jets issuing into a hot and diluted coflow. Combust. Flame, 142, 117–129.
  • Coelho, P.J., and Peters, N. 2001. Numerical simulation of a MILD combustion burner. Combust. Flame, 124, 503–518.
  • Dally, B., Karpetis, A., and Barlow, R.S. 2002. Structure of turbulent non-premixed jet flames in a diluted hot coflow. Proc. Combust. Inst., 29, 1147–1154.
  • De., A., Dongre, A., and Yadav, R. 2013. Numerical investigation of Delft-jet-in-hot-coflow (DJHC) burner using probability density function (PDF) transport modelling. Paper No. GT2013-95390. ASME Turbo Expo, San-Antonio, TX, June 3–7.
  • De., A., Oldenhof, E., Sathiah, P., and Roekaerts, D. 2011. Numerical simulation of Delft-jet-in-hot-coflow (DJHC) flames using the eddy dissipation concept model for turbulence–chemistry interaction. Flow Turbulence Combust., 87, 1386–6184.
  • Domingo, P., Vervisch, L., and Veynante, D. 2008. Large-eddy simulation of a lifted methane jet flame in a vitiated coflow. Combust. Flame, 152, 415–432.
  • Dopazo, C., and O’Brien, E.E. 1974. Functional formulation of non-isothermal turbulent reactive flows. Phys. Fluids, 17, 1968–1975.
  • Fox, R.O. 2003. Computational Models for Turbulent Reacting Flows, Cambridge University Press, Cambridge, UK.
  • Germano, M., Piomelli, U., Moin, P., and Cabot, W.H. 1991. A dynamic subgrid-scale eddy viscosity model. Phys. Fluids, A3, 1760–1765.
  • Haworth, D.C. 2010. Progress in probability density function methods for turbulent reacting flows. Prog. Energy Combust. Sci., 36, 168–259.
  • Hinze, J.O. 1975. Turbulence, McGraw-Hill Publishing Co., New York.
  • Ihme, M., and See, Y.C. 2011. LES flamelet modelling of a three-stream MILD combustor: Analysis of flame sensitivity to scalar inflow conditions. Proc. Combust. Inst., 33, 1309–1317.
  • Ihme, M., Zhand, J., He, G., and Dally, B. 2012. Large-eddy simulation of a jet-in-hot-coflow burner operating in the oxygen-diluted combustion regime. Flow Turbulence Combust., 89, 449–464.
  • James, S., Anand, M.S., Razdan, M.K., and Pope, S.B. 1999. In situ detailed chemistry calculations in combustor flow analyses. J. Eng. Gas Turbines Power, 123, 747–756.
  • Janicka, J., Kolbe, W., and Kollmann, W. 1979. Closure of the transport equation for the probability density function of turbulent scalar fields. J. Non-Equilib. Thermodyn., 4, 47–66.
  • Jeong, J., and Hussain, F. 1995. On the identification of a vortex. J. Fluid Mech., 285, 69–94.
  • Kim, S.H., Huh, K.Y., and Dally, B.B. 2005. Conditional moment closure modelling of turbulent non-premixed combustion in diluted hot coflow. Proc. Combust. Inst., 30, 751–757.
  • Kim, W.W., and Menon, S. 1997. Application of the localized dynamic subgrid-scale model to turbulent wall-bounded flows. Technical report AIAA-97-0210. 35th Aerosapce Science Meeting, American Institute of Aeronautics and Astronautics, Reno, NV, January 6–10
  • Kulkarni, R.M., and Polifke, W. 2013. LES of Delft-jet-in-hot-coflow (DJHC) with tabulated chemistry and stochastic fields combustion models. Fuel Process. Technol., 107, 138–146.
  • Oldenhof, E., Tummers, M.J., van Veen, E.H., and Roekaerts, D.J.E.M. 2010. Ignition kernel formation and lift-off behaviour of jet-in-hot-coflow flames. Combust. Flame, 157, 1167–1178.
  • Oldenhof, E., Tummers, M.J., van Veen, E.H., and Roekaerts, D.J.E.M. 2011. Role of entrainment in the stabilisation of jet-in-hot-coflow flames. Combust. Flame, 158, 1553–1563.
  • Oldenhof, E., Tummers, M.J., van Veen, E.H., and Roekaerts, D.J.E.M. 2013. Conditional flow field statistics of jet-in-hot-coflow flames. Combust. Flame, 160, 1428–1440.
  • Plessing, T., Peters N., and Wünning, J.G. 1998. Twenty-Seventh Symposium (Int.) on Combustion, The Combustion Institute, Pittsburgh, PA, pp. 3197–3204.
  • Poinsot, T., and Veynante, D. 2005. Theoretical and Numerical Combustion, 2nd Edition, R.T. Edwards, Incorporated, Philadelphia, PA.
  • Pope, S.B. 1985. PDF methods for turbulent reacting flows. Prog. Energy Combust. Sci., 11, 119–192.
  • Pope, S.B. 1997. Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation. Combust. Theor. Model., 1, 41–63.
  • Pope, S.B. 2000. Turbulent Flows, Cambridge University Press, Cambridge, UK.
  • Pope, S.B., and Wang, H. 2008. Lagrangian investigation of local extinction, re-ignition and auto-ignition in turbulent flames. Combust. Theor. Model., 12, 857–882.
  • Sagaut, P. 2006. Large Eddy Simulation for Incompressible Flows, An Introduction, 3rd Edition, Springer, Berlin.
  • Smagorinsky, J. 1963. General circulation experiments with the primitive equations. I. The basic experiment. Mon. Weather Rev., 91, 99–164.
  • Subramaniam, S., and Pope, S.B. 1998. A mixing model for turbulent reacting flows based on Euclidean minimum spanning trees. Combust. Flame, 115, 487–514.
  • Wünning, J.A., and Wünning, J.G. 1997. Flameless oxidation to reduce thermal NO-formation. Prog. Energy Combust. Sci., 23, 81–94.
  • Yadav, R., Kushari, A., Eswaran, V., and Verma, A.K. 2013. A numerical investigation of the Eulerian PDF transport approach for modeling of turbulent non-premixed pilot stabilized flames. Combust. Flame, 160, 618–634.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.