623
Views
22
CrossRef citations to date
0
Altmetric
Original Articles

Experimental Characterization of Methane Inverse Diffusion Flame

&
Pages 1249-1272 | Received 03 Oct 2013, Accepted 30 Apr 2014, Published online: 28 Jul 2014

REFERENCES

  • Arthur, J.A., and Napier, D.H. 1955. Formation of carbon and related materials in diffusion flames. Proc. Combust. Inst., 5, 303–316.
  • Baudoin, E., Bai, X.S., Yan, B., Liu, C., Yu, R., Lantz, A., Hosseini, S.M., Li, B., Elbaz, A., Sami, M., Li, Z.S., Collin, R., Chen, G., Fuchs, L., Aldén, M., and Mansour, M.S. 2013. Effect of partial premixing on stabilization and local extinction of turbulent methane/air flames. Flow Turbulence Combust., 90(2), 269–284.
  • Blevins, L.G., Fletcher, R.A., Benner, Jr., B.A., Steel, E.B., and Mulholland, G.W. 2002. The existence of young soot in the exhaust of inverse diffusion flames. Proc. Combust. Inst., 29, 2325–2333.
  • Chaudhuri, S., Kostka, S., Renfro, M.W., and Cetegen, B.M. 2010. Blow off dynamics of bluff body stabilized turbulent premixed flames. Combust. Flame, 157, 790–802.
  • Dong, L.L., Cheung, C.S., and Leung, C.W. 2007a. Heat transfer characteristics of an impinging inverse diffusion flame jet—Part I: Free flame structure. Int. J. Heat Mass Transfer, 50, 5108–5123.
  • Dong, L.L., Cheung, C.S., and Leung, C.W. 2007b. Heat transfer characteristics of an impinging inverse diffusion flame jet—Part II: Impinging flame structure and impingement heat transfer. Int. J. Heat Mass Transfer, 50, 5124–5138.
  • Du, J., and Axelbaum, R.L. 1995. The effect of flame structure on soot-particle inception in diffusion flames. Combust. Flame, 100, 367–375.
  • Juddoo, M., and Masri, A.R. 2011. High-speed OH-PLIF imaging of extinction and re-ignition in non-premixed flames with various levels of oxygenation. Combust. Flame, 158, 902–914.
  • Makel, D.B., and Kennedy, I.M. 1994. Soot formation in laminar inverse diffusion flames. Combust. Sci. Technol., 97(4–6), 303–314.
  • Mikofski, M.A., Williams, T.C., Shaddix, C.R., and Blevins, L.G. 2006. Flame height measurement of laminar inverse. Combust. Flame, 146, 63–72.
  • Muniz, L., and Mungal, M.G. 2001. Effects of heat release and buoyancy on flow structure and entrainment in turbulent nonpremixed flames. Combust. Flame, 126, 1402–1420.
  • Najm, H.N., Paul, P.H., Mueller, C.J., and Wyckoff, P.S. 1998. On the adequacy of certain experimental observables as measurements of flame burning rate. Combust. Flame, 113, 312–332.
  • Roper, F.G., Smith, C., and Cunningham, A.C. 1977. The prediction of laminar jet diffusion flame sizes. Part II. Experimental verification. Combust. Flame, 29, 227–234.
  • Santoro, R.J., Yeh, T., Horvath, T.T., and Semerjian, H.G. 1987. The transport and growth of soot particles in laminar diffusion flames. Combust. Sci. Technol., 53(2–3), 89–115.
  • Sato, A., Hashiba, K., Hasatani, M., Sugiyama, S., and Kimura, J. 1975. A correctional calculation method for thermocouple measurements of temperatures in flames. Combust. Flame, 24, 35–41.
  • Shaddix, C.R., and Williams, T.C. 2009. Measurements of the velocity field in laminar ethylene inverse jet diffusion flames. Combust. Flame, 156, 942–945.
  • Shaddix, C.R., Williams, C.W., Blevins, L.G.R., and Schefer, W. 2005. Flame structure of steady and pulsed sooting inverse jet diffusion flames. Proc. Combust. Inst., 30, 1501–1508.
  • Sidebotham, G.W., and Glassman, I. 1992. Flame temperature, fuel structure, and fuel concentration effects on soot formation in inverse diffusion flames. Combust. Flame, 90, 269–283.
  • Sze, L.K., Cheung, C.S., and Leung, C.W. 2004. Temperature distribution and heat transfer characteristics of an inverse diffusion flame with circumferentially arranged fuel ports. Int. J. Heat Mass Transfer, 47, 3119–3129.
  • Sze, L.K., Cheung, C.S., and Leung, C.W. 2006. Appearance, temperature, and NOx emission of two inverse diffusion flames with different port design. Combust. Flame, 144, 237–248.
  • Takagi, T., Shin, H.D., and Ishio, A. 1981. Properties of turbulence in turbulent diffusion flames. Combust. Flame, 40, 121–140.
  • Takeno, T., and Kotani, Y. 1975. An experimental study on the stability of jet diffusion flame. Acta Astronaut., 2(11–12), 999–1008.
  • Vanquickenborne, L., and Van Taggelen, A. 1966. The stabilization mechanism of lifted diffusion flames. Combust. Flame, 10(1), 59–69.
  • Vranos, A., Taback, E.D., and Shipman, C.W. 1968. An experimental study of the stability of hydrogen-air diffusion flames. Combust. Flame, 12(3), 253–260.
  • Wu, K.T., and Essenhigh, R.H. 1984. Mapping and structure of inverse diffusion flames of methane. Proc. Combust. Inst., 20, 1925–1932.
  • Yaldizli, M., Mehravaran, K., Mohammad, H., and Jaberi, F.A. 2008. The structure of partially premixed methane flames in high-intensity turbulent flows. Combust. Flame, 154, 692–714.
  • Yamashita, H., Kushida G., and Takeno, T. 1992. Characteristics of turbulent fluctuations in jet diffusion flames. Symp. (Int.) Combust., 24(1), 311–316.
  • Zhen, H.S., Choy, Y.S., and Cheung, C.S. 2011. Effects of nozzle length on flame and emission behaviors of multi-fuel-jet inverse diffusion flame burner. Appl. Energy, 88, 2917–2924.
  • Zhen, H.S., Leung, C.W., and Cheung, C.S. 2009. Heat transfer from a turbulent swirling inverse diffusion flame to a flat surface. Int. J. Heat Mass Transfer, 52, 2740–2748.
  • Zhen, H.S., Leung, C.W., and Cheung, C.S. 2010. Thermal and emission characteristics of turbulent swirling inverse diffusion flame. Int. J. Heat Mass Transfer, 53, 902–909.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.