605
Views
16
CrossRef citations to date
0
Altmetric
Original Articles

Flame Leading Edge and Flow Dynamics in a Swirling, Lifted Flame

, , &
Pages 1816-1843 | Received 04 May 2013, Accepted 08 May 2014, Published online: 06 Oct 2014

REFERENCES

  • Acharya, V., Emerson, B., Mondragon, U.M., Shin, D.H., Brown, C.T., Mcdonell, V.G., and Lieuwen, T. 2013. Velocity and flame wrinkling characteristics of a transversely forced, bluff body stabilized flame. Part II: Flame response modeling and comparison with measurements. Combust. Sci. Technol., 185(7), 1077–1097.
  • Acharya, V., Shreekrishna, Shin, D.H., and Lieuwen, T. 2012. Swirl effects on harmonically excited, premixed flame kinematics. Combust. Flame, 159, 1139–1150.
  • Balachandran, R., Ayoola, B.O., Kaminski, C.F., Dowling, A.P., and Mastorakos, E. 2005. Experimental investigation of the nonlinear response of turbulent premixed flames to imposed inlet velocity oscillations. Combust. Flame, 143, 37–55.
  • Bellows, B.D., Bobba, M.K., Forte, A., Seltzman, J.M., and Lieuwen, T. 2007a. Flame transfer function saturation mechanisms in a swirl-stabilized combustor. Proc. Combust. Inst., 31, 3181–3188.
  • Bellows, B.D., Bobba, M.K., Seitzman, J.M., and Lieuwen, T. 2007b. Nonlinear flame transfer function characteristics in a swirl-stabilized combustor. J. Eng. Gas Turbines Power, 129, 954–961.
  • Biagioli, F., Güthe, F., and Schuermans, B. 2008. Combustion dynamics linked to flame behaviour in a partially premixed swirled industrial burner. Exp. Therm. Fluid Sci., 32, 1344–1353.
  • Birbaud, A.L., Durox, D., Ducruix, S., and Candel, S. 2007. Dynamics of confined premixed flames submitted to upstream acoustic modulations. Proc. Combust. Inst., 31, 1257–1265.
  • Blimbaum, J., Zanchetta, M., Akin, T., Acharya, V., O’Connor, J., Noble, D.R., and Lieuwen, T. 2012. Transverse to longitudinal acoustic coupling processes in annular combustion chambers. Int. J. Spray Combust. Dyn., 4, 275–297.
  • Boxx, I., Stöhr, M., Carter, C., and Meier, W. 2010. Temporally resolved planar measurements of transient phenomena in a partially pre-mixed swirl flame in a gas turbine model combustor. Combust. Flame, 157(8), 1510–1525.
  • Cheng, R.K., Yegian, D.T., Miyasato, M.M., Samuelsen, G.S., Benson, C.E., Pellizzari, R., and Loftus, P. 2000. Scaling and development of low-swirl burners for low-emission furnaces and boilers. Proc. Combust. Inst., 28, 1305–1313.
  • Cuquel, A., Durox, D., and Schuller, T. 2013. Impact of flame base dynamics on the non-linear frequency response of conical flames. Comptes Rendus Mécanique, 341, 171–180.
  • Durbin, M.D., Vangsness, M.D., Ballal, D.R., and Katta, V.R. 1996. Study of flame stability in a step swirl combustor. J. Eng. Gas Turbines Power, 118, 308–315.
  • Emerson, B., Mondragon, U., Acharya, V., Shin, D.-H., Brown, C., Mcdonell, V., and Lieuwen, T. 2013. Velocity and flame wrinkling characteristics of a transversely forced, bluff body stabilized flame. Part I: Experiments and data analysis. Combust. Sci. Technol., 185(7), 1056–1076.
  • Fanaca, D., Alemela, P.R., Hirsch, C., and Sattelmayer, T. 2010. Comparison of the flow field of a swirl stabilized premixed burner in an annular and a single burner combustion chamber. J. Eng. Gas Turbines Power—Trans. ASME, 7, 132.
  • Fleifil, M., Annaswamy, A.M., Ghoneim, Z.A., and Ghoniem, A.F. 1996. Response of a laminar premixed flame to flow oscillations: A kinematic model and thermoacoustic instability results. Combust. Flame, 106, 487–510.
  • Hirsch, C., Fanaca, D., Reddy, P., Polifke, W., and Sattelmayer, T. 2005. Influence of the swirler design on the flame transfer function of premixed flames. Presented at the ASME Turbo Expo 2005: Power for Land, Sea, and Air, Vol. 2: Turbo Expo 2005, Reno, NV, June 6–9; GT2005-68195, pp. 151–160.
  • Ho, C.M., and Huerre, P. 1984. Perturbed free shear layers. Ann. Rev. Fluid Mech., 16, 365–422.
  • Huang, Y., and Ratner, A. 2009. Experimental investigation of thermoacoustic coupling for low-swirl lean premixed flames. J. Propul. Power, 25, 365–373.
  • Huang, Y., and Yang, V. 2005. Effect of swirl on combustion dynamics in a lean-premixed swirl-stabilized combustor. Proc. Combust. Inst., 30, 1775–1782.
  • Iudiciani, P., and Duwig, C. 2011. Large eddy simulation of the sensitivity of vortex breakdown and flame stabilisation to axial forcing. Flow, Turbulence Combust., 86, 639–666.
  • Joshi, N.D., Epstein, M.J., Durlak, S., Marakovits, S., and Sabla, P.E. 1994. Development of a fuel air premixer for aero-derivative dry low emissions combustors. Proceedings of the International Gas Turbine And Aeroengine Congress And Exposition, The Hague, Netherlands, June 13–16, pp. 1–9.
  • Kang, D.M., Culick, F.E.C., and Ratner, A. 2007. Combustion dynamics of a low-swirl combustor. Combust. Flame, 151, 412–425.
  • Khalil, S., Hourigan, K., and Thompson, M.C. 2006. Response of unconfined vortex breakdown to axial pulsing. Phys. Fluids, 18, 038102.
  • Kim, D., Lee, J.G., Quay, B.D., and Santavicca, D. 2008. Effect of flame structure on the flame transfer function in a premixed gas turbine combustor. Presented at the ASME Turbo Expo, Berlin, Germany, June 9–13.
  • Kim, J.-C., Sung, H.-G., Min, D.-K., and Yang, V. 2009. Large eddy simulation of the turbulent flow field in a swirl stabilized annular combustor. Presented at the AIAA Aerospace Sciences Meeting and Exhibit, Orlando, Florida, January 5–8, pp. 1–13.
  • Kim, K.T., and Hochgreb, S. 2011. The nonlinear heat release response of stratified lean-premixed flames to acoustic velocity oscillations. Combust. Flame, 158, 2482–2499.
  • Kim, K.T., Lee, J.G., Quay, B.D., and Santavicca, D.A. 2010. Response of partially premixed flames to acoustic velocity and equivalence ratio perturbations. Combust. Flame, 157, 1731–1744.
  • Kornilov, V.N., Schreel, K.R.A.M., and De Goey, L.P.H. 2007. Experimental assessment of the acoustic response of laminar premixed bunsen flames. Proc. Combust. Inst., 31, 1239–1246.
  • Lacarelle, A., Faustmann, T., Greenblatt, D., Paschereit, C.O., Lehmann, O., Luchtenburg, D.M., and Noack, B.R. 2009. Spatiotemporal characterization of a conical swirler flow field under strong forcing. J. Eng. Gas Turbines Power, 131, 031504.
  • Lee, J.G., and Santavicca, D.A. 2003. Experimental diagnostics for the study of combustion instabilities in lean premixed combustors. J. Propul. Power, 19, 735–750.
  • Lieuwen, T.C. 2012. Unsteady Combustor Physics, Cambridge University Press, Cambridge.
  • Lieuwen, T., and Yang, V. 2005. Combustion Instabilities in Gas Turbine Engines, AIAA, Washington D.C.
  • Masselin, M., and Ho, C. 1985. Lock-on and instability in a flat plate wake. AIAA Shear Flow Control Conference, Boulder, CO, March 12–15.
  • Meier, W., Weigand, P., Duan, X.R., and Giezendanner-Thoben, R. 2007. Detailed characterization of the dynamics of thermoacoustic pulsations in a lean premixed swirl flame. Combust. Flame, 150, 2–26.
  • Moeck, J.P., Bourgouin, J.-F., Durox, D., Schuller, T., and Candel, S. 2012. Nonlinear interaction between a precessing vortex core and acoustic oscillations in a turbulent swirling flame. Combust. Flame, 159, 2650–2668.
  • Mongia, A.-R., Danis, Elliott-Lewis, Jeng, Johnson, Mcdonell, Samuelsen, Vise. 2001. Swirl Cup Modeling. Part 1. 37th AIAA/ASME/SAE/See Joint Propulsion, Salt Lake City, Utah, July 8–11, pp. 1–24.
  • O’Connor, J., and Lieuwen, T. 2011. Disturbance field characteristics of a transversely excited burner. Combust. Sci. Technol., 183, 427–443.
  • O’Connor, J., and Lieuwen, T. 2012a. Further characterization of the disturbance field in a transversely excited swirl-stabilized flame. J. Eng. Gas Turbines Power, 1, 134.
  • O’Connor, J., and Lieuwen, T. 2012b. Recirculation zone dynamics of a transversely excited swirl flow and flame. Phys. Fluids, 10, 24.
  • O’Connor, J., Kolb, M., and Lieuwen, T. 2011. Visualization of shear layer dynamics in a transversely excited, annular premixing nozzle. 49th AIAA Aerospace Sciences Meeting, Orlando, FL, January 4–7.
  • Palies, P., Durox, D., Schuller, T., and Candel, S. 2010. The combined dynamics of swirler and turbulent premixed swirling flames. Combust. Flame, 157, 1698–1717.
  • Paschereit, C.O., Flohr, P., Bockholts, M., and Polifke, W. 2000. Fluid Dynamic Instabilities in a Swirl Stabilized Burner and Their Effect on Heat Release Fluctuations, A A Balkema Publishers, Leiden.
  • Petersen, R.E., and Emmons, H.W. 1961. Stability of laminar flames. Phys. Fluids, 4, 456–464.
  • Pier, B. 2003. Open-loop control of absolutely unstable domains. Proc. R. Soc. London. Ser. A, 459, 1105.
  • Preetham, S.H., and Lieuwen, T. 2008. Dynamics of laminar flames forced by harmonic velocity disturbances. J. Propul. Power, 24, 1390–1402
  • Schimek, S., Moeck, J.P., and Paschereit, C.O. 2011. An experimental investigation of the nonlinear response of an atmospheric swirl-stabilized premixed flame. J. Eng. Gas Turbines Power, 10, 133.
  • Schuller, T., Ducruix, S., Durox, D., and Candel, S. 2002. Modeling tools for the prediction of premixed flame transfer functions. Proc. Combust. Inst., 29, 107–113.
  • Sheen, H.J., Chen, W.J., and Jeng, S.Y. 1996. Recirculation zones of unconfined and confined annular swirling jets. AIAA J., 34, 572–579.
  • Shin, D.H., Plaks, D.V., Lieuwen, T., Mondragon, U.M., Brown, C.T., and Mcdonell, V.G. 2011. Dynamics of a longitudinally forced, bluff body stabilized flame. J. Propul. Power, 27, 105–116.
  • Staffelbach, G., Gicquel, L.Y.M., Boudier, G., and Poinsot, T. 2009. Large eddy simulation of self excited azimuthal modes in annular combustors. Proc. Combust. Inst., 32, 2909–2916.
  • Syred, N. 2006. A review of oscillation mechanisms and the role of the precessing vortex core (PVC) in swirl combustion systems. Prog. Energy Combust. Sci., 32, 93–161.
  • Thumuluru, S.K., and Lieuwen, T. 2009. Characterization of acoustically forced swirl flame dynamics. Proc. Combust. Inst., 32, 2893–2900.
  • Truffaut, J.-M., and Searby, G. 1999. Experimental study of the Darrieus-Landau instability on an inverted-‘V’ flame, and measurement of the Markstein number. Combust. Sci. Technol., 149, 35–52.
  • Wang, S., Hsieh, S.-Y., and Yang, V. 2005. Unsteady flow evolution in swirl injector with radial entry. I. Stationary conditions. Phys. Fluids, 17, 045106–13.
  • Weigand, P., Meier, W., Duan, X.R., Stricker, W., and Aigner, M. 2006. Investigations of swirl flames in a gas turbine model combustor. I. Flow field, structures, temperature, and species distributions. Combust. Flame, 144, 205–224.
  • Worth, N.A., and Dawson, J.R. 2013. Self-excited circumferential instabilities in a model annular gas turbine combustor: Global flame dynamics. Proc. Combust. Inst., 34, 3127–3134.
  • Zhang, Q., Shanbhogue, S.J., Lieuwen, T., and O’Connor, J. 2011. strain characteristics near the flame attachment point in a swirling flow. Combust. Sci. Technol., 183, 665–685.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.