105
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Modeling of the Strain Rate Contribution to the Flame Surface Density Transport for Non-Unity Lewis Number Flames in Large Eddy Simulations

, &
Pages 1338-1369 | Received 19 Oct 2013, Accepted 30 Mar 2014, Published online: 30 Sep 2014

REFERENCES

  • Angelberger, C., Veynante, D., Egolfopoulos, F., and Poinsot, T. 1998. Large eddy simulation of combustion instabilities in turbulent premixed flames. In Proceedings of the Summer Program, Center for Turbulence Research, Stanford, CA, pp. 66–82.
  • Ashurst, W.T., Peters, N., and Smooke, M.D. 1987. Numerical simulation of turbulent flame structure with non-unity Lewis number. Combust. Sci. Technol., 53, 339.
  • Boger, M., Veynante, D., Boughanem, H., and Trouvé, A. 1998. Direct numerical simulation analysis of flame surface density concept for large eddy simulation of turbulent premixed combustion. Proc. Combust. Inst., 27, 917.
  • Candel, S.M., and Poinsot, T.J. 1990. Flame stretch and the balance equation for the flame area. Combust. Sci. Technol., 70, 1.
  • Candel, S., Venante, D., Lacas, F., Maistret, E., Darabhia, N., and Poinsot, T. 1990. Coherent flamelet model: Applications and recent extensions. In B.E. Larrouturou (Ed.), Recent Advances in Combustion Modelling, World Scientific, Singapore, pp. 19–64.
  • Cant, R.S., Pope, S.B., and Bray, K.N.C. 1991. Modelling of flamelet surface to volume ratio in turbulent premixed combustion. Proc. Combust. Inst., 23, 809.
  • Chakraborty, N. 2004. Fundamental study of turbulent premixed combustion using direct numerical simulation (DNS). PhD thesis. University of Cambridge, Cambridge, UK.
  • Chakraborty, N., and Cant, R.S. 2005. Influence of Lewis number on curvature effects in turbulent premixed flame propagation in the thin reaction zones regime. Phys. Fluids, 17, 105105.
  • Chakraborty, N., and Cant, R.S. 2006. Statistical behavior and modelling of flame normal vector in turbulent premixed flames. Numer. Heat Transfer A, 50(7), 623.
  • Chakraborty, N., and Cant, R.S. 2007. A priori analysis of the curvature and propagation terms of the flame surface density transport equation for large eddy simulation. Phys. Fluids, 19, 105101.
  • Chakraborty, N., and Cant, R.S. 2009a. Direct numerical simulation analysis of the flame surface density transport equation in the context of large eddy simulation. Proc. Combust. Inst., 32, 1445.
  • Chakraborty, N., Cant, R.S. 2009b. Effects of Lewis number on scalar transport in turbulent premixed flames. Phys. Fluids, 21, 035110.
  • Chakraborty, N., and Cant, R.S. 2009c. Effects of Lewis number on turbulent scalar transport and its modelling in turbulent premixed flames. Combust. Flame, 156, 1427.
  • Chakraborty, N., and Cant, R.S. 2009d. Physical insight and modelling for Lewis number effects on turbulent heat and mass transport in turbulent premixed flames. Numer. Heat Transfer A, 55(8), 762.
  • Chakraborty, N., and Cant, R.S. 2011. Effects of Lewis number on flame surface density transport in turbulent premixed combustion. Combust. Flame, 158, 1768.
  • Chakraborty, N., and Cant, R.S. 2013. Turbulent Reynolds number dependence of flame surface density transport in the context of Reynolds averaged Navier Stokes simulations. Proc. Combust. Inst., 34, 1347.
  • Chakraborty, N., and Klein, M. 2008. A priori direct numerical simulation assessment of algebraic flame surface density models for turbulent premixed flames in the context of large eddy simulation. Phys. Fluids, 20, 085108.
  • Chakraborty, N., Klein, M., and Cant, R.S. 2011a. Effects of turbulent Reynolds number on the displacement speed statistics in the thin reaction zones regime turbulent premixed combustion.J. Combust., 2011, 473679.
  • Chakraborty, N., Hartung, G., Katragadda, M., and Kaminski, C. F. 2011b. A numerical comparison of 2D and 3D density-weighted displacement speed statistics and implications for laser based measurements of flame displacement speed. Combust. Flame, 158, 1372.
  • Chakraborty, N., and Swaminathan, N. 2007. Influence of Damköhler number on turbulence-scalar interaction in premixed flames, Part I: Physical insight. Phys. Fluids, 19, 045103.
  • Chakraborty, N., and Swaminathan, N. 2010. Effects of Lewis number on scalar dissipation transport and its modelling implications for turbulent premixed combustion. Combust. Sci. Technol., 182, 1201.
  • Chakraborty, N., and Swaminathan, N. 2011. Effects of Lewis number on scalar variance transport in turbulent premixed flames. Flow Turbul. Combust., 87, 261.
  • Chakraborty, N., Klein, M., and Swaminathan, N. 2009. Effects of Lewis number on reactive scalar gradient alignment with local strain rate in turbulent premixed flames. Proc. Combust. Inst., 32, 1409.
  • Charlette, F. Meneveau, C., and Veynante, D. 2002a. A power-law flame wrinkling model for LES of premixed turbulent combustion. Part I: Nondynamic formulation and initial tests. Combust. Flame, 131, 159.
  • Charlette, F., Meneveau, C., and Veynante, D. 2002b. A power-law flame wrinkling model for LES of premixed turbulent combustion. Part II: Dynamic formulation. Combust. Flame, 131, 181.
  • Charlette, F., Trouvé, A., Boger, M., and Veynante, D. 1999. A flame surface density model for large eddy simulations of turbulent premixed flames. The Combustion Institute Joint Meeting of the British, German and French Sections, Nancy, France, May 18–21.
  • Chen, J.H., Choudhary, A., De Supinski, D., Hawkes, E.R., Klasky, S., Liao, W.K., Ma, K.L., Mellor-Crummey, J., Podhorski, N., Sankaran, R., Shende, S., and Yoo, C.S. 2009. Terascale direct numerical simulations of turbulent combustion using S3D. Comput. Sci. Discovery, 2, 015001.
  • Clavin, P., and Williams, F.A. 1982. Effects of molecular diffusion and thermal expansion on the structure and dynamics of turbulent premixed flames in turbulent flows of large scale and small intensity. J. Fluid Mech., 128, 251.
  • Dinkelacker, F., Manickam, B., and Muppala, S.R. 2011. Modelling and simulation of lean premixed turbulent methane/hydrogen/air flames with an effective Lewis number approach. Combust. Flame, 158, 1742.
  • Düsing, M., Sadiki, A., and Janicka, J. 2006. Towards a classification of models for the numerical simulation of premixed combustion based on a generalized regime diagram. Combust. Theor. Model., 10, 105.
  • Echekki, T., and Chen, J.H. 1999. Analysis of the contribution of curvature to premixed flame propagation. Combust. Flame, 118, 303–311.
  • Grout, R.W. 2007. An age-extended progress variable for conditioning reaction rates. Phys. Fluids, 19, 105107.
  • Han, I., and Huh, K.H. 2008. Roles of displacement speed on evolution of flame surface density for different turbulent intensities and Lewis numbers for turbulent premixed combustion. Combust. Flame, 152, 194.
  • Han, I., Huh, K.H. 2009. Effects of the Karlovitz number on the evolution of the flame surface density in turbulent premixed flames. Proc. Combust. Inst., 33, 1419.
  • Hawkes, E.R. 2000. Large eddy simulation of premixed turbulent combustion. PhD thesis. Cambridge University, Cambridge, UK.
  • Hawkes, E.R., and Cant, R.S. 2000. A flame surface density approach to large eddy simulation of premixed turbulent combustion. Proc. Combust. Inst., 28, 51.
  • Hawkes, E.R., and Cant, R.S. 2001a. Implications of a flame surface density approach to large eddy simulation of turbulent premixed combustion. Combust. Flame, 126, 1617.
  • Hawkes, E.R., and Cant, R.S. 2001b. Physical and numerical realizability requirements for flame surface density approaches to large-eddy and Reynolds averaged simulation of premixed turbulent combustion. Combust. Theor. Model., 5, 699–720.
  • Hernandez-Perez, F.E., Yuen, F.T.C., Groth, C.P.T., and Gülder, Ö.L. 2011. LES of a laboratory-scale turbulent premixed Bunsen flame using FSD, PCM-FPI and thickened flame models. Proc. Combust. Inst., 33, 1365.
  • Im, H.G., and Chen, J.H. 2002. Preferential diffusion effects on the burning rate of interacting turbulent premixed hydrogen-air flames. Combust. Flame, 131, 246.
  • Jenkins, K.W., and Cant, R.S. 1999. DNS of turbulent flame kernels. In C. Liu, L. Sakell, and T. Beautner (Eds.), Proceedings of the Second AFOSR Conference on DNS and LES, Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 191–202.
  • Katragadda, M. 2013. Development of flame surface density closure for turbulent premixed flames based on a-priori direct numerical simulation. PhD thesis. Newcastle University, Newcastle-Upon-Tyne, UK.
  • Katragadda, M., and Chakraborty, N. 2012a. Modelling of the curvature term of the flame surface density transport equation for large eddy simulations. J. Combust., 2012, 915482.
  • Katragadda, M., and Chakraborty, N. 2012b. A-priori direct numerical simulation modelling of the curvature term of the flame surface density transport equation for non-unity lewis number flames in the context of large eddy simulations. Int. J. Chem. Eng., 2012, 103727.
  • Katragadda, M., Chakraborty, N., and Cant, R.S. 2012a. A-priori DNS assessment of wrinkling factor based algebraic flame surface density models in the context of large eddy simulations for non-unity Lewis number flames in the thin reaction zones regime. J. Combust., 2012, 794671.
  • Katragadda, M., Chakraborty, N., and Cant, R.S. 2012b. Effects of turbulent Reynolds number on the performance of algebraic flame surface density models for large eddy simulation in the thin reaction zones regime: A direct numerical simulation analysis. J. Combust., 2012, 353257.
  • Katragadda, M., Malkeson, S.P., and Chakraborty, N. 2011. Modelling of the tangential strain rate term of the flame surface density transport equation in the context of Reynolds averaged Navier-Stokes simulation. Proc. Combust. Inst., 33, 1429.
  • Knikker, R., Veynante, D., and Meneveau, C. 2004. A dynamic flame surface density model for large eddy simulations of turbulent premixed combustion. Phys. Fluids, 16, 91.
  • Kobayashi, H., Tamura, H., Maruta, K., Nikola, T., and Williams, F.A. 1996. Burning velocity of turbulent premixed flames in a high-pressure environment. Proc. Combust. Inst., 26, 389.
  • Law, C.K., and Kwon, O.C. 2004. Effects of hydrocarbon substitution on atmospheric hydrogen–air flame propagation. Int. J. Hydrogen Energy, 29, 867.
  • Ma, T., Stein, O., Chakraborty, N., and Kempf, A. 2013. A-posteriori testing of algebraic flame surface density models for LES. Combust. Theor. Model., 17, 431.
  • Meneveau, C., and Poinsot, T. 1991. Stretching and quenching of flamelets in premixed turbulent combustion. Combust. Flame, 86, 311.
  • Mizomoto, M., Asaka, S., Ikai, S., and Law, C.K. 1984. Effects of preferential diffusion on the burning intensity of curved flames. Proc. Combust. Inst., 20, 1933.
  • Muppala, S.R., Aluri, N.K., Dinkelacker, F., and Leipertz, A. 2005. Development of an algebraic reaction rate approach for the numerical calculation of turbulent premixed methane, ethylene and propane/air flames at pressures up to 1.0 MPa. Combust. Flame, 140, 257.
  • Peters, N. 2000. Turbulent Combustion, Cambridge University Press, Cambridge, UK.
  • Peters, N., Terhoeven, P., Chen, J.H., and Echekki, T. 1998. Statistics of flame displacement speeds from computations of 2-D unsteady methane-air flames, Proc. Combust. Inst., 27, 833.
  • Pitsch, H., and Duchamp, L.G. 2002. Large-eddy simulation of turbulent premixed combustion using level-set approach, Proc. Combust. Inst., 29, 2001–2008.
  • Pope, S.B. 1988. The evolution of surfaces in turbulence. Int. J. Eng. Sci., 26(5), 445.
  • Reddy, H., and Abraham, J. 2012. Two-dimensional direct numerical simulation evaluation of the flame surface density model for flames developing from an ignition kernel in lean methane/air mixtures under engine conditions. Phys. Fluids, 24, 105108.
  • Rutland, C.J., and Trouvé, A. 1993. Direct simulations of premixed turbulent flames with nonunity Lewis numbers. Combust. Flame, 94, 41.
  • Sivashinsky, G.I. 1983. Instabilities, pattern formation and turbulence in flames. Annu. Rev. Fluid Mech., 15, 179.
  • Tennekes, H., and Lumley, J.L. 1972. A First Course in Turbulence, MIT Press, Cambridge, MA.
  • Trouvé, A., and Poinsot, T. 1994. The evolution equation for the flame surface density in turbulent premixed combustion. J. Fluid Mech., 278, 1.
  • Veynante, D., Trouvé, A., Bray, K.N.C., and Mantel, T. 1997. Gradient and counter-gradient scalar transport in turbulent premixed flames. J. Fluid Mech., 332, 263.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.