657
Views
19
CrossRef citations to date
0
Altmetric
Original Articles

Simulation of Large-Scale LNG Pool Fires Using FireFoam

, &
Pages 1632-1649 | Received 21 Oct 2013, Accepted 30 Mar 2014, Published online: 30 Sep 2014

REFERENCES

  • American Gas Association (AGA). 1974. LNG Safety Program, Interim Report on Phase II Work, IS-3-1. American Gas Association, Arlington, VA.
  • Beji, T. 2009. Modelling of soot and radiation in fires including experimental work on corridor-like enclosures. PhD thesis, University of Ulster.
  • Blanchat, T., Helmick, P., Jensen, R., Luketa, A., Deola, R., Suo-Anttila, J., Mercier, J., Miller, T., Ricks, A., Simpson, R., Demosthenous, B., Tieszen, S., and Hightower, M. 2011. Summary of the PHONIX series large scale LNG pool fire experiments. Presented at the 23rd International Colloquium on the Dynamics of Explosions and Reactive Sysems (ICDERS), University of California–Irvine, July 24–29.
  • Burgess, D., and Zabetakis, M.G. 1962. Fire and Explosion Hazards of LNG. U.S. Bureau of Mines Investigation Report # 6099, Washington, DC.
  • Chamberlain, G. 2010. Fire loading and structure response. FABIG Technical note, Ascot, Berkshire, UK.
  • Chatterjee, P., de Ris, J. L., Wang, Y., and Dorofeev, S. B. 2011. A model for soot radiation in buoyant diffusion flames. Proc. Combust. Inst., 33, 2665.
  • Chen, Z. B., Wen, J., Xu, B. P., and Dembele, S. 2011. Large eddy simulation of fire dynamics with the improved eddy dissipation concept. Fire Saf. Sci., 10, 795–808.
  • Chen, Z.B. 2012. Extension of the eddy dissipation concept and laminar smoke point soot model to the larger eddy simulation of fire dynamics. PhD thesis, Kingston University, London.
  • Chen, Z. B., Wen, J., Xu, B. P., and Dembele, S. 2014a. Extension of the eddy dissipation concept and smoke point soot model to the LES frame for fire simulations. Fire Saf. J., 64, 12–26.
  • Chen, Z. B., Wen, J., Xu, B. P., and Dembele, S. 2014b. Large eddy simulation of a medium-scale methanol pool fire using the extended eddy dissipation concept. Int. J. Heat Mass Transfer, 70, 389–408.
  • Coppalle, A., and Vervisch, P. 1983. The total emissivities of high-temperature flames. Combust. Flame, 49, 101–108.
  • Cox, G., and Chitty, R. 1985. Some source-dependent effects of unbounded fires. Combust. Flame, 60, 219–232.
  • Friend, D.G., Ely, J.F., and Ingham, H. 1989. Thermophysical properties of methane. J. Phys. Chem. Ref. Data, 18, 583–638.
  • Government Accountability Office (GAO). 2007. Public safety consequences of a terrorist attack on a tanker carrying liquefied natural gas need clarification. Government Accountability Office report, GAO-07-316, Government Accountability Office, Washington, DC.
  • Heskestad, G. 1983. Luminous heights of turbulent diffusion flames. Fire Saf. J., 5, 103–108.
  • Hill K., Dreisbach J., Joglar F., Najafi B., McGrattan K., Peacock R., and Hamins A. 2007. Verification and validation of selected fire models for nuclear power plant applications. NUREG 1824, United States Nuclear Regulatory Commission, Washington, DC.
  • Japan Gas Association (JGA). 1976. A study of dispersion of evaporated gas and ignition of LNG pool resulting from continuous spillage of LNG. J. Jpn. Gas Assoc., Tokyo, Japan.
  • Johnson, A.D. 1992. A model for predicting thermal radiation hazards from large-scale LNG pool. Inst. Chem. Eng. Symp., 130, 507–524.
  • Kataoka, H. 1981. Report on LNG anti-disaster experimental test. Report by Tokyo Gas Co., Ltd., Japan.
  • Lautenberger, C.W. 2002. CFD simulation of soot formation and flame radiation. Worcester Polytechnic Institute Center for Fire Safety Studies, Worcester Polytechnic Institute, Worcester, MA.
  • Lemmon, E. W., Huber, M.L., and McLinden, M.O. 2010. NIST Reference Fluid Thermodynamic and Transport Properties—REFPROP (Version 9.0): User’s Guide. National Institute of Standards and Technology, Gaithersburg, MD.
  • Markstein, G.H. 1989. Correlations for smoke points and radiant emission of laminar hydrocarbon diffusion flames. Symp. (Int.) Combust., 22, 363–370.
  • Mary Kay O’Connor Process Safety Center. 2008. LNG Pool Fire Modelling White Paper. Mary Kay O’Connor Process Safety Center, Texas A&M University, College Station, TX.
  • May, H.G., and McQueen, W. 1973. Radiation from large liquefied natural fires. Combust. Sci. Technol., 7, 51–66.
  • McBride, B.J., Zehe, M. J., and Gordon, S. 2002. NASA Glenn coefficients for calculating thermodynamic properties of individual species. NASA/TP-2002-211556, NASA Glenn Research Center, Cleveland, OH.
  • McGrattan, K. B., Baum, H. R., and Rehm, R. G. 1998. Large eddy simulations of smoke movement. Fire Saf. J., 30, 161–178.
  • Menon, S., Yeung, P.K., and Kim, W.W. 1996. Effect of subgrid models on the computed interscale energy transfer in isotropic turbulence. Comput. Fluids, 25, 165–180.
  • Mizner, G.A., and Eyre, J.A. 1982. Large scale LNG and LPG pool fires. Inst. Chem. Eng. Symp., Ser. 71, Manchester, UK.
  • Moorhouse, D.J. 1982. Scaling criteria derived from large scale experiments-the assessment of major hazards. Inst. Chem. Eng., Manchester, UK.
  • Nedelka, D.J., Moorhouse, J., and Tucker, R.F. 1989. The Montoir 35m diameter LNG pool fire experiments. TRCP.3148R. Presented at the 9th International Conference & Expo on Liquefied Natural Gas (LNG9), Nice, France.
  • Raj, P.K. 2005. Large LNG fire thermal radiation—Modeling issues & hazard criteria revisited. Process Saf. Prog., 24, 192–202.
  • Raj, P.K., and Atallah, S. 1974. Thermal radiation from LNG fires. Adv. Cryogenic Eng., 20, 143–150.
  • Raj, P.K., Moussa, A.N., and Aravamudan, K. 1979. Experiments involving pool and vapor fires from spills of LNG on water. NTIS # AD-A077073, USCG Report, Washington, DC.
  • Sandia National Laboratory. 2012. Liquefied natural gas safety research, Report to Congress, May. U.S. Department of Energy, Washington, DC.
  • Siegel, R., and Howell, J.R. 1981. Thermal Radiation Heat Transfer, Hemisphere Publishing Corporation, New York.
  • Smith, T.F., Shen, Z.F., and Friedman, J.N. 1982. Evaluation of coefficients for the weighted sum of gray gases model. J. Heat Transfer, 104, 602–608.
  • Tewarson, A. 1988. Smoke point height and fire properties of materials. National Institute of Standards Technology, Gaithersburg, MD.
  • Thomas, P.H. 1963. The size of flames from natural fires. Proc. Combust. Inst., 9, 844–859.
  • Thomas, P.H. 1965. Fire spread in wooden cribs: Part III, The effect of wind. Fire Research Note Nr. 600, in Fire Research Station, Boreham Woods, England.
  • Wang, Y., Chatterjee, P., and de Ris, J.L. 2011. Large eddy simulation of fire plumes. Proc. Combust. Inst., 33, 2473–2480.
  • Welker, J.R., and Sliepcevich C.M. 1966. Bending of wind-blown flames from liquid pools. Fire Technol., 2, 127.
  • Yao, W. 2010. Soot modelling in laminar ang turbulent combustions. PhD thesis, University of Ulster, UK.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.