542
Views
25
CrossRef citations to date
0
Altmetric
Original Articles

Experimental and Kinetic Modeling Study of Ignition Characteristics of Chinese RP-3 Kerosene

, , &
Pages 396-409 | Received 15 Nov 2013, Accepted 22 Jul 2014, Published online: 10 Sep 2014

REFERENCES

  • Bikas, G., and Peters, N. 2001. Kinetic modelling of n-decane combustion and auto-ignition. Combust. Flame, 126, 1456.
  • Bradley, D., Habik, S.E.D., and Sherif, S.A. 1991. A generalization of laminar burning velocities and volumetric heat release rates. Combust. Flame, 87, 336.
  • Cathonnet, M., Voisin, D., Etsouli, A., Sferdean, C., Reuillon, M., and Boettner, J.C. 1999. Kerosene combustion modelling using detailed and reduced chemical kinetic mechanisms. In Symposium Applied Vehicle Technology Panel on Gas Turbine Engine Combustion, RTO Meeting Proceedings, France, Vol. 14, p. 1.
  • Char, J.M., Liou, W.J., Yeh, J.H., and Chiu, C.L. 1996. Ignition and combustion study of JP-8 fuel in a supersonic flow field. Shock Waves, 6, 259.
  • Dagaut, P. 2002. On the kinetics of hydrocarbon oxidation from natural gas to kerosene and diesel fuel. Phys. Chem. Chem. Phys., 4, 2079.
  • Dagaut, P., Bakali, A.E., and Ristori, A. 2006. The combustion of kerosene: Experimental results and kinetic modeling using 1- to 3-component surrogate model fuels. Fuel, 85, 944.
  • Dagaut, P., Ristori, A.E., Bakali, A., and Cathonnet, M. 2002. Experimental and kinetic modeling study of the oxidation of n-propylbenzene. Fuel, 81, 173.
  • Davidson, D.F., Horning, D.C., Herbon, J., and Hanson, R.K. 2000. Shock tube measurements of JP-10 ignition. Proc. Combust. Inst., 28, 1687.
  • Dean, A.J., Penyazkov, O.G., Sevruk, K.L., and Varatharajan, B. 2007. Autoignition of surrogate fuels at elevated temperatures and pressures. Proc. Combust. Inst., 31, 2481.
  • Edwards, T., and Maurice, L.Q. 2001. Surrogate mixtures to represent complex aviation and rocket fuels. J. Propul. Power, 17, 461.
  • Honnet, S., Seshadri, K., Niemann, U., and Peters, N. 2009. A surrogate fuel for kerosene. Proc. Combust. Inst., 32, 485.
  • Kahandawala, M.S.P., Dewitt, M.J., Corporan, E., and Sidhu, S.S. 2008. Ignition and emission characteristics of surrogate and practical jet fuels. Energy Fuels, 22, 3673.
  • Kumar, K., and Sung, C.J. 2010. An experimental study of the auto-ignition characteristics of conventional jet fuel/oxidizer mixtures: Jet-A and JP-8. Combust. Flame, 157, 676.
  • Lindstedt, P., and Maurice, L.Q. 2000. Detailed chemical-kinetic model for aviation fuels. J. Propul. Power, 16, 187.
  • Luche, J., Reuillon, M., Boettner, J.C., and Cathonnet, M. 2004. Reduction of large detailed kinetic mechanisms: application to kerosene/air combustion. Combust. Sci. Technol., 176, 1935.
  • Patterson, P.M., Kyne, A.G., Pourkhashanian, M., Williams, A., and Wilson, C.W. 2000. Combustion of kerosene in counter-flow diffusion flames. J. Propul. Power, 16, 453.
  • Powell, O.A., Edwards, J.T., Norris, R.B., Numbers, K.E., and Pearce, J.A. 2001. Development of hydrocarbon-fueled scramjet engines: The hypersonic technology (HyTech) program. J. Propul. Power, 17, 1170.
  • Tan, N.X., Wang, J.B., and Hua, X.X. 2011. Combustion mechanism and kinetic modeling study of methyl cyclohexane at high temperature. Chem. J. Chin. Univ., 32, 1832.
  • Vasu, S.S., Davidson, D.F., and Hanson, R.K. 2008. Jet fuel ignition delay times: Shock tube experiments over wide conditions and surrogate model predictions. Combust. Flame, 152, 125.
  • Vovelle, C., Delfau, J.L., and Reuillon, M. 1994. Formation of aromatic hydrocarbons in decane and kerosene flames at reduced pressure. In H. Bockhorn ( Ed.), Soot Formation in Combustion: Mechanisms and Models, Springer, Berlin, Germany.
  • Wang, H.W., and Oehlschlaeger, M.A. 2012. Autoignition studies of conventional and Fischer-Tropsch jet fuels. Fuel, 98, 249.
  • Wang, T.S. 2001. Thermophysics characterization of kerosene combustion. J. Thermophys. Heat Transfer, 15, 140.
  • You, X.Q., Egolfopoulos, F.N., and Wang, H. 2009. Detailed and simplified kinetic models of n-dodecane oxidation: The role of fuel cracking in aliphatic hydrocarbon combustion. Proc. Combust. Inst., 32, 403.
  • Zeppieri, S.P., Klotz, S.D., and Dryer, F.L. 2000. Modeling concepts for larger carbon number alkanes: a partially reduced skeletal mechanism for n-decane oxidation and pyrolysis. Proc. Combust. Inst., 8, 1587.
  • Zhang. C.H., Li, P., Guo. J.J., and Li, X.Y. 2012a. Shock-tube measurements of toluene ignition times and radical chemiluminescent spectra at low pressures. Energy Fuels, 26, 1107.
  • Zhang, Y.J., Huang, Z.H., Wei, L.J., Zhang, J.X., and Law, C.K. 2012b. Experimental and modeling study on ignition delays of lean mixtures of methane, hydrogen, oxygen, and argon at elevated pressures. Combust. Flame, 159, 918

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.