337
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

Simulation of Non-Autoignited and Autoignited Laminar Non-Premixed Jet Flames of Syngas in Heated Coflow Air

, &
Pages 132-147 | Received 15 Aug 2014, Accepted 03 Oct 2014, Published online: 10 Dec 2014

REFERENCES

  • Bisetti, F., Sarathy, S.M., Toma, M., and Chung, S.H. In press. Stabilization and structure of n-heptane tribrachial flames in axisymmetric laminar jets. Proc. Combust. Inst.
  • Cavaliere, D.E., De Joannon, M., Sabia, P., Sirignano, M., and D’Anna, A. 2010. A comprehensive kinetic modeling of ignition of syngas–air mixtures at low temperatures and high pressures. Combust. Sci. Technol., 182, 692–701.
  • Chaos, M., and Dyer, F.L. 2008. Syngas combustion kinetics and applications. Combust. Sci. Technol., 180, 1053–1096.
  • Chen, R.H., Kothawala, A., Chaos, M., and Chew, L.P. 2005. Schmidt number effects on laminar jet diffusion flame liftoff. Combust. Flame, 141, 469–472.
  • Chen, R.H., Li, Z., and Phuoc, T.X. 2012. Propagation and stability characteristics of laminar lifted diffusion flame base. Combust. Flame, 159, 1821–1831.
  • Choi, B.C., and Chung, S.H. 2008. Characteristics of methane turbulent lifted flames in coflow jets with initial temperature variation. Trans. Korean Soc. Mech. Eng. B, 32, 970–976 ( in Korean).
  • Choi, B.C., and Chung, S.H. 2010. Autoignited laminar lifted flames of methane, ethylene, ethane, and n-butane jets in coflow air with elevated temperature. Combust. Flame, 157, 2348–2356.
  • Choi, B.C., and Chung, S.H. 2012a. Autoignited laminar lifted flames of methane/hydrogen mixtures in heated coflow air. Combust. Flame, 159, 1481–1488.
  • Choi, B.C., and Chung, S.H. 2012b. Characteristics of autoignited laminar lifted flames in heated coflow jets of carbon monoxide/hydrogen mixtures. Trans. Korean Soc. Mech. Eng. B, 36, 639–646 ( in Korean).
  • Choi, B.C., Kim, K.N., and Chung, S.H. 2009a. Autoignited laminar lifted flames of propane in coflow jets with tribrachial edge and mild combustion. Combust. Flame, 156, 396–404.
  • Choi, S.K., and Chung, S.H. 2013. Autoignited and non-autoignited lifted flames of pre-vaporized n-heptane in coflow jets at elevated temperatures. Combust. Flame, 160, 1717–1724.
  • Choi, S.K., Kim, J., Chung, S.H., and Kim, J.S. 2009b. Structure of the edge flame in a methane–oxygen mixing layer. Combustion Theor. Modell., 13, 39–56.
  • Chung, S.H. 2007. Stabilization, propagation and instability of tribrachial triple flames. Proc. Combust. Inst., 31, 877–892.
  • Chung, S.H., and Law, C.K. 1984. Burke-Schumann flame with streamwise and preferential diffusion. Combust. Sci. Technol., 37, 21–46.
  • Chung, S.H., and Lee, B.J. 1991. On the characteristics of laminar lifted flames in a nonpremixed jet. Combust. Flame, 86, 62–72.
  • Chung, S.H., and Williams, F.A. 1990. Asymptotic structure and extinction of CO-H2 diffusion flames with reduced kinetic mechanisms. Combust. Flame, 82, 389–410.
  • Davis, S.G., Joshi, A.V., Wang, H., and Egolfopoulos, F. 2005. An optimized kinetic model of H2/CO combustion. Proc. Combust. Inst., 30, 1283–1292.
  • Dong, C., Zhou, Q., Zhao, Q., Xu, T., and Hui, S. 2009. Experimental study on the laminar flame speed of hydrogen/carbon monoxide/air mixtures. Fuel, 88, 1858–1863.
  • Dryer, F.L., and Chaos, M. 2008. Ignition of syngas/air and hydrogen/air mixtures at low temperatures and high pressures: Experimental data interpretation and kinetic modeling implications. Combust. Flame, 152, 293–299.
  • Fotache, C.G., Tan, Y., Sung, C.J., and Law, C.K. 2000. Ignition of CO/H2/N2 versus heated air in counterflow: Experimental and modeling results. Combust. Flame, 120, 417–426.
  • Frassoldati, A., Faravelli, T., and Ranzi, E. 2007. The ignition, combustion and flame structure of carbon monoxide/hydrogen mixtures. Note 1: Detailed kinetic modeling of syngas combustion also in presence of nitrogen compounds. Int. J. Hydrogen Energy, 32, 3471–3485.
  • Hong, Z., Davidson, D.F., and Hanson, R.K. 2011. An improved H2/O2 mechanism based on recent shock tube/laser absorption measurements. Combust. Flame, 158, 633–644.
  • Kee, R.J., Rupley, F.M., Miller, J.A., Coltrin, M.E., Grcar, J.F., Meeks, E., Moffat, H.K., Lutz, A.E., Dixon-Lewis, G., Smooke, M.D., Warnatz, J., Evans, G.H., Larson, R.S., Mitchell, R.E., Petzold, L.R., Reynolds, W.C., Caracotsios, M., Stewart, W.E., Glarborg, P., Wang, C., and Adigun, O. 2000. CHEMKIN Collection, Release 3.6. Reaction Design, Inc., San Diego, CA.
  • Kim, J., Kim, K.N., Won, S.H., Fujita, O., Takahashi, J., and Chung, S.H. 2006. Numerical simulation and flight experiment on oscillating lifted flames in coflow jets with gravity level variation. Combust. Flame, 145, 181–193.
  • Kim, J., Won, S.H., Shin, M.K., and Chung, S.H. 2002. Numerical simulation of oscillating lifted flames in coflow jets with highly diluted propane. Proc. Combust. Inst., 29, 1589–1595.
  • Kim, K.N., Won, S.H., and Chung, S.H. 2007a. Characteristics of laminar lifted flames in coflow jets with initial temperature variation. Proc. Combust. Inst., 31, 947–954.
  • Kim, K.N., Won, S.H., and Chung, S.H. 2007b. Characteristics of turbulent lifted flames in coflow jets with initial temperature variation. Proc. Combust. Inst., 31, 1591–1598.
  • Lee, B.J., and Chung, S.H. 1997. Stabilization of lifted tribrachial flames in a laminar nonpremixed jet. Combust. Flame, 109, 163–172.
  • Lee, S.R., and Chung, S.H. 1994. On the structure of hydrogen diffusion flames with reduced kinetic mechanisms. Combust. Sci. Technol., 96, 247–277.
  • Li, J., Zhao, Z., Kazakov, A., Chaos, M., Dryer, F.L., and Scire, J.J., Jr. 2007. A comprehensive kinetic mechanism for CO, CH2O, and CH3OH combustion. Int. J. Chem. Kinet., 39, 109–136.
  • Li, Z., Chen, R.H., and Phuoc, T.X. 2010. Effects of multi-component diffusion and heat release on laminar diffusion flame liftoff. Combust. Flame, 157, 1484–1495.
  • Lieuwen, T., Yang, V., and Yetter, R. (Eds.). 2010. Synthesis Gas Combustion: Fundamentals and Applications. CRC Press, Taylor & Francis Group, Boca Raton, FL.
  • Natarajan, J., Kochar, Y., Lieuwen, T., and Seitzman, J. 2009. Pressure and preheat dependence of laminar flame speeds of H2/CO/CO2/O2/He mixtures. Proc. Combust. Inst., 32, 1261–1268.
  • Natarajan, J., Lieuwen, T., and Seitzman, J. 2007. Laminar flame speeds of H2/CO mixtures: Effect of CO2 dilution, preheat temperature, and pressure. Combust. Flame, 151, 104–119.
  • Qin, X., Choi, C.W., Mukhopadhyay, A., Puri, I.K., Aggarwal, S.K., and Katta, V.R. 2004. Triple flame propagation and stabilization in a laminar axisymmetric jet. Combust. Theor. Modell., 8, 293–314.
  • Sankaran, R., and Im, H.G. 2004. Effects of mixture inhomogeneity on the auto-ignition of reactants under HCCI environment. Presented at the 42nd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, January 5–8.
  • Saxena, P., and Williams, F.A. 2006. Testing a small detailed chemical-kinetic mechanism for the combustion of hydrogen and carbon monoxide. Combust. Flame, 145, 316–323.
  • Shaddix, C.R. 1999. Correcting thermocouple measurements for radiation loss: A critical review. Paper HTD99-282. Proceedings of the 33rd National Heat Transfer Conference, Albuquerque, NM, August 15–17.
  • Smith, G.P., Golden, D.M., Frenklach, M., Moriarty, N.W., Eiteneer, B., Goldenberg, M., Bowman, C.T., Hanson, R.K., Song, S., Gardiner, W.C., Lissianski, V.V., and Qin, Z. 1999. GRI-Mech 3.0. Available at: http://www.me.berkeley.edu/gri_mech/
  • Walton, S.M., He, X., Zigler, B.T., and Wooldridge, M.S. 2007. An experimental investigation of the ignition properties of hydrogen and carbon monoxide mixtures for syngas turbine applications. Proc. Combust. Inst., 31, 3147–3154.
  • Zhang, Q., Noble, D.R., and Lieuwen, T. 2007. Characterization of fuel composition effects in H2/CO/CH4 mixtures upon lean blowout. Trans. ASME, 129, 688–694.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.