386
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

Comparative Study on Microwave Plasma-Assisted Combustion of Premixed and Nonpremixed Methane/Air Mixtures

, &
Pages 999-1020 | Received 11 Aug 2014, Accepted 25 Nov 2014, Published online: 02 Apr 2015

REFERENCES

  • Adamovich, I.V., Lempert, W.R., Nishihara, M., Rich, J.W., and Utkin, Y.G. 2008. Repetitively pulsed nonequilibrium plasmas for magnetohydrodynamic flow control and plasma-assisted combustion. J. Propul. Power, 24, 1198.
  • Babaritskii, A.I., Baranov, I.E., Bibikov, M.B., Demkin, S.A., Zhivotov, V.K., Konovalov, G.M., Lysov, G.V., Moskovskii, A.S., Rusanov, V.D., Smirnov, R.V., and Cheban’kov, F.N. 2004. Partial hydrocarbon oxidation processes induced by atmospheric-pressure microwave-discharge plasma. High Energy Chem., 38, 407.
  • Bang, C.U., Hong, Y.C., Cho, S.C., Uhm, H.S., and Yi, W.J. 2006. Methane-augmented microwave plasma burner. IEEE Trans. Plasma Sci., 34, 1751.
  • Beduneau, J.-L., Kim, B., Zimmer, L., and Ikeda, Y. 2003. Measurements of minimum ignition energy in premixed laminar methane/air flow by using laser induced spark. Combust. Flame, 132, 653.
  • Brown, M.S., Forlines, R.A., and Ganguly, B.N. 2006. Dynamics of hydrocarbon-based pulsed DC discharge for ignition applications. In 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, AIAA, Reston, VA, p. 611.
  • Bruggeman, P., and Schram, D.C. 2010. On OH production in water containing atmospheric pressure plasmas. Plasma Sources Sci. Technol., 19, 045025.
  • Chintala, N., Bao, A., Lou, G., and Adamovich, I.V. 2006. Measurements of combustion efficiency in nonequilibrium RF plasma-ignited flows. Combust. Flame, 144, 744.
  • Davydov, A.M., Gritsinin, S.I., Kossyi, I.A., Shikhman, Y.M., and Vinogradov, V.A. 2008. Application of MW plasma generator for ignition of kerosene/air mixture. IEEE Trans. Plasma Sci., 36, 2909.
  • Devriendt, K., Van Look, H., Ceursters, B., and Peeters, J. 1996. Kinetics of formation of chemiluminescent CH(A2Δ) by the elementary reactions of C2H(X2Σ+) with O(3P) and O2(X3Σg−): A pulse laser photolysis study. Chem. Phys. Lett., 261, 450.
  • Evertsen, R., Van Oijen, J.A., Hermanns, R.T.E., De Goey, L.P.H., and Ter Meulen, J.J. 2003. Measurements of absolute concentrations of CH in a premixed atmospheric flat flame by cavity ring-down spectroscopy. Combust. Flame, 132, 34.
  • Gaydon, A.G. 1974. The Spectroscopy of Flames, Springer, New York.
  • Goldman, A., and Gillis, J.R. 1981. Spectral line parameters for the A2∑-X2Π(0,0) band of OH for atmospheric and high temperatures. J. Quant. Spectrosc. Radiat. Transfer, 25, 111.
  • Grebe, J., and Homann, K.H. 1982. Blue-green chemiluminescence in the system C2H2/O/H. Formation of the emitters CH(A2Δ), C2(d3Πg) and C2H*. Ber. Bunsen Ges. Phys. Chem., 86, 587.
  • Hammack, S., Lee, T., and Carter, C. 2012. Microwave plasma enhancement of various flame geometries at atmospheric pressure. IEEE Trans. Plasma Sci., 40, 3139.
  • Hammack, S., Rao, X., Lee, T., and Carter, C. 2011. Direct-coupled plasma-assisted combustion using a microwave waveguide torch. IEEE Trans. Plasma Sci., 39, 3300.
  • Han, J., Yamashita, H., and Hayashi, N. 2010. Numerical study on the spark ignition characteristics of methane-air mixture using detailed chemical kinetics: Effect of equivalence ratio, electrode gap distance, and electrode radius on MIE, quenching distance, and ignition delay. Combust. Flame, 157, 1414.
  • Han, J., Yamashita, H., and Yamamoto, K. 2009. Numerical study on spark ignition characteristics of a methane-air mixture using detailed chemical kinetics. J. Therm. Sci. Technol., 4, 305.
  • Hemawan, K.W., Romel, C.L., Zuo, S., Wichman, I.S., Grotjohn, T.A., and Asmussen, J. 2006. Microwave plasma-assisted premixed flame combustion. Appl. Phys. Lett., 89, 141501.
  • Hemawan, K.W., Wichman, I.S., Lee, T., Grotjohn, T.A., and Asmussen, J. 2009. Compact microwave re-entrant cavity applicator for plasma-assisted combustion. Rev. Sci. Instrum., 80, 053507.
  • Hong, Y.C., and Uhm, H.S. 2006. Properties of plasma flames sustained by microwaves and burning hydrocarbon fuels. Phys. Plasmas, 13, 113501.
  • Inomata, T., Okazaki, S., Moriwaki, T., and Suzuki, M. 1983. The application of silent electric discharges to propagating flames. Combust. Flame, 50, 361.
  • Kim, W., Do, H., Mungal, M.G., and Cappelli, M.A. 2006. Flame stabilization enhancement and NOx production using ultra short repetitively pulsed plasma discharges. In 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, AIAA, Reston, VA, p. 560.
  • Kojima, J., Ikeda, Y., and Nakajima, T. 2005. Basic aspects of OH(A), CH(A), and C2(d) chemiluminescence in the reaction zone of laminar methane–air premixed flames. Combust. Flame, 140, 34.
  • Laux, C.O., Spence, T.G., Kruger, C.H., and Zare, R.N. 2003. Optical diagnostics of atmospheric pressure air plasmas. Plasma Sources Sci. Technol., 12, 125.
  • Leonov, S.B., Yarantsev, D.A., Napartovich, A.P., and Kochetov, I.V. 2006. Plasma-assisted combustion of gaseous fuel in supersonic duct. IEEE Trans. Plasma Sci., 34, 2514.
  • Liu, J., Wang, F., Li, G., Kuthi, A., Gutmark, E.J., Ronney, P.D., and Gundersen, M.A. 2005. Transient plasma ignition. IEEE Trans. Plasma Sci., 33, 326.
  • Lou, G., Bao, A., Nishihara, M., Keshav, S., Utkin, Y.G., Rich, J.W., Lempert, W.R., and Adamovich, I. V. 2007. Ignition of premixed hydrocarbon–air flows by repetitively pulsed, nanosecond pulse duration plasma. Proc. Combust. Inst., 31, 3327.
  • Luque, J., and Crosley, D.R. 1999. LIFBASE: Database and spectral simulation (version 1.5). SRI International Report MP 99-009. http://www.sri.com/engage/products-solutions/lifbase.
  • Maclatchy, C.S., Clements, R.M., and Smy, P.R. 1982. An experimental investigation of the effect of microwave radiation on a propane-air flame. Combust. Flame, 45, 161.
  • Matveev, I., Matveeva, S., Gutsol, A., and Fridman, A. 2005. Non-equilibrium plasma igniters and pilots for aerospace application. In 43rd AIAA Aerospace Sciences Meeting and Exhibit. Reno, NV, AIAA, Reston, VA, p. 1191.
  • Michael, J.B., Chng, T.L., and Miles, R.B. 2013. Sustained propagation of ultra-lean methane/air flames with pulsed microwave energy deposition. Combust. Flame, 160, 796.
  • Palm, P., Meyer, R., Plönjes, E., Rich, J.W., and Adamovich, I. V. 2003. Nonequilibrium radio frequency discharge plasma effect on a conical shock wave: M = 2.5 flow. AIAA J., 41, 465.
  • Pancheshnyi, S. V., Lacoste, D.A., Bourdon, A., and Laux, C.O. 2006. Ignition of propane-air mixtures by a repetitively pulsed nanosecond discharge. IEEE Trans. Plasma Sci., 34, 2478.
  • Phuoc, T.X., and White, F.P. 1999. Laser-induced spark ignition of CH4/air mixtures. Combust. Flame, 119, 203.
  • Rao, X., Hammack, S., Carter, C., Grotjohn, T., Asmussen, J., and Lee, T. 2011a. Microwave-plasma-coupled re-ignition of methane-and-oxygen mixture under auto-ignition temperature. IEEE Trans. Plasma Sci., 39, 3307.
  • Rao, X., Hammack, S., Carter, C., and Lee, T. 2011b. Laser diagnostic imaging of energetically enhanced flames using direct microwave plasma coupling. IEEE Trans. Plasma Sci., 39, 2354.
  • Rao, X., Hemawan, K., Wichman, I., Carter, C., Grotjohn, T., Asmussen, J., and Lee, T. 2011c. Combustion dynamics for energetically enhanced flames using direct microwave energy coupling. Proc. Combust. Inst., 33, 3233.
  • Rosocha, L.A., Coates, D.M., Platts, D., and Stange, S. 2004. Plasma-enhanced combustion of propane using a silent discharge. Phys. Plasmas, 11, 2950.
  • Sasaki, K., and Shinohara, K. 2012. Transition from equilibrium to nonequilibrium combustion of premixed burner flame by microwave irradiation. J. Phys. D: Appl. Phys., 45, 455202.
  • Schmidt, M., and Conrads, H. 2008. Plasma sources. In Low Temperature Plasmas: Fundamentals, Technologies, and Techniques, R. Hippler, H. Kersten,M.Schmidt, and K. H. Schoenbach (Eds.), Wiley-VCH, Weinheim, Germany, Vol. 1, p. 363.
  • Schocker, A., Kohse-Höinghaus, K., and Brockhinke, A. 2005. Quantitative determination of combustion intermediates with cavity ring-down spectroscopy: Systematic study in propene flames near the soot-formation limit. Appl. Opt., 44, 6660.
  • Shibkov, V.M., Shibkova, L.V., Gromov, V.G., Karachev, A.A., and Konstantinovskii, R.S. 2011. Influence of surface microwave discharge on ignition of high-speed propane-air flows. High Temp., 49, 155.
  • Shinohara, K., Takada, N., and Sasaki, K. 2009. Enhancement of burning velocity in premixed burner flame by irradiating microwave power. J. Phys. D: Appl. Phys., 42, 182008.
  • Smirnov, V.V., Stelmakh, O.M., Fabelinsky, V.I., Kozlov, D.N., Starik, A.M., and Titova, N.S. 2008. On the influence of electronically excited oxygen molecules on combustion of hydrogen–oxygen mixture. J. Phys. D: Appl. Phys., 41, 192001.
  • Smith, G.P., Golden, D.M., Frenklach, M., Moriarty, N.W., Eiteneer, B., Goldenberg, M., Bowman, C.T., Hanson, R.K., Song, S., Gardiner, W.C., Lissianski, V.V., and Qin, Z. N.d. GRI-Mech 3.0. http://www.me.berkeley.edu/gri_mech/.
  • Smith, G.P., Luque, J., Park, C., Jeffries, J.B., and Crosley, D.R. 2002. Low pressure flame determinations of rate constants for OH(A) and CH(A) chemiluminescence. Combust. Flame, 131, 59.
  • Smith, G.P., Park, C., Schneiderman, J., and Luque, J. 2005. C2 Swan band laser-induced fluorescence and chemiluminescence in low-pressure hydrocarbon flames. Combust. Flame, 141, 66.
  • Srivastava, N., and Wang, C. 2011. Determination of OH radicals in an atmospheric pressure helium microwave plasma jet. IEEE Trans. Plasma Sci., 39, 918.
  • Srivastava, N., Wang, C., and Dibble, T.S. 2009. A study of OH radicals in an atmospheric AC discharge plasma using near infrared diode laser cavity ringdown spectroscopy combined with optical emission spectroscopy. Eur. Phys. J. D, 54, 77.
  • Starikovskaia, S.M. 2006. Plasma assisted ignition and combustion. J. Phys. D: Appl. Phys., 39, R265.
  • Starikovskaia, S.M., Kosarev, I.N., Krasnochub, A.V., Mintoussov, E.I., and Starikovskii, A.Y. 2005. Control of combustion and ignition of hydrocarbon-containing mixtures by nanosecond discharges. In 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, AIAA, Reston, VA, p. 1195.
  • Starikovskaia, S.M., Starikovskii, A.Y., and Zatsepin, D.V. 2001. Hydrogen oxidation in a stoichiometric hydrogen-air mixture in the fast ionization wave. Combust. Theor. Model., 5, 97.
  • Stockman, E.S., Zaidi, S.H., Miles, R.B., Carter, C.D., and Ryan, M.D. 2009. Measurements of combustion properties in a microwave enhanced flame. Combust. Flame, 156, 1453.
  • Takita, K. 2002. Ignition and flame-holding by oxygen, nitrogen and argon plasma torches in supersonic airflow. Combust. Flame, 128, 301.
  • Tan, W., and Grotjohn, T.A. 1995. Modelling the electromagnetic field and plasma discharge in a microwave plasma diamond deposition reactor. Diamond Relat. Mater., 4, 1145.
  • Vincent-Randonnier, A., Larigaldie, S., Magre, P., and Sabel’nikov, V. 2007. Plasma assisted combustion: Effect of a coaxial DBD on a methane diffusion flame. Plasma Sources Sci. Technol., 16, 149.
  • Walsh, K.T., Long, M.B., Tanoff, M.A., and Smooke, M.D. 1998. Experimental and computational study of CH, CH*, and OH* in an axisymmetric laminar diffusion flame. Symp. (Int.) Combust., 27, 615.
  • Wang, C. 2007. Plasma-cavity ringdown spectroscopy (P-CRDS) for elemental and isotopic measurements. J. Anal. At. Spectrom., 22, 1347.
  • Wang, C., and Srivastava, N. 2010. OH number densities and plasma jet behavior in atmospheric microwave plasma jets operating with different plasma gases (Ar, Ar/N2, and Ar/O2). Eur. Phys. J. D, 60, 465.
  • Wang, C., Srivastava, N., and Dibble, T.S. 2009a. Observation and quantification of OH radicals in the far downstream part of an atmospheric microwave plasma jet using cavity ringdown spectroscopy. Appl. Phys. Lett., 95, 051501.
  • Wang, C., Srivastava, N., Scherrer, S., Jang, P.-R., Dibble, T.S., and Duan, Y. 2009b. Optical diagnostics of a low power–low gas flow rates atmospheric-pressure argon plasma created by a microwave plasma torch. Plasma Sources Sci. Technol., 18, 025030.
  • Wang, C., and Wu, W. 2013. Simultaneous measurements of OH(A) and OH(X) radicals in microwave plasma jet-assisted combustion of methane/air mixtures around the lean-burn limit using optical emission spectroscopy and cavity ringdown spectroscopy. J. Phys. D: Appl. Phys., 46, 464008.
  • Wang, C., and Wu, W. 2014. Roles of the state-resolved OH(A) and OH(X) radicals in microwave plasma assisted combustion of premixed methane/air: An exploratory study. Combust. Flame, 161, 2073.
  • Wang, F., Liu, J.B., Sinibaldi, J., Brophy, C., Kuthi, A., Jiang, C., Ronney, P., and Gundersen, M.A. 2005. Transient plasma ignition of quiescent and flowing air/fuel mixtures. IEEE Trans. Plasma Sci., 33, 844.
  • Wills, J.B., Smith, J.A., Boxford, W.E., Elks, J.M.F., Ashfold, M.N.R., and Orr-Ewing, A.J. 2002. Measurements of C2 and CH concentrations and temperatures in a dc arc jet using cavity ring-down spectroscopy. J. Appl. Phys., 92, 4213.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.