441
Views
19
CrossRef citations to date
0
Altmetric
Original Articles

Effects of Burner Configuration on the Characteristics of Biogas Flameless Combustion

&
Pages 1240-1262 | Received 13 Jun 2014, Accepted 16 Mar 2015, Published online: 07 May 2015

REFERENCES

  • Ansys, Inc. n.d. 14.0 Theory Guide. Fluent. Ansys Inc., Canonsburg, PA, p. 5.
  • Cho, E.-S., Danon, B., de Jong, W., and Roekaerts, D.J.E.M. 2011. Behavior of a 300kWth regenerative multi-burner flameless oxidation furnace. Appl. Energy, 88, 4952–4959. doi:10.1016/j.apenergy.2011.06.039
  • Cho, E.-S., Shin, D., Lu, J., de Jong, W., and Roekaerts, D.J.E.M., 2013. Configuration effects of natural gas fired multi-pair regenerative burners in a flameless oxidation furnace on efficiency and emissions. Appl. Energy, 107, 25–32. doi:10.1016/j.apenergy.2013.01.035
  • Christo, F.C., and Dally, B.B. 2005. Modeling turbulent reacting jets issuing into a hot and diluted coflow. Combust. Flame, 142, 117–129. doi:10.1016/j.combustflame.2005.03.002
  • Colorado, A.F., Herrera, B.A., and Amell, A.A. 2010. Performance of a flameless combustion furnace using biogas and natural gas. Bioresour. Technol. 101, 2443–2449. doi:10.1016/j.biortech.2009.11.003
  • Danon, B., Cho, E.-S., de Jong, W., and Roekaerts, D.J.E.M. 2011a. Numerical investigation of burner positioning effects in a multi-burner flameless combustion furnace. Appl. Therm. Eng., 31, 3885–3896. doi:10.1016/j.applthermaleng.2011.07.036
  • Danon, B., Cho, E.-S., de Jong, W., and Roekaerts, D.J.E.M. 2011b. Parametric optimization study of a multi-burner flameless combustion furnace. Appl. Therm. Eng., 31, 3000–3008. doi:10.1016/j.applthermaleng.2011.05.033
  • Danon, B., de Jong, W., and Roekaerts, D.J.E.M. 2010. Experimental and numerical investigation of a FLOX combustor firing low calorific value gases. Combust. Sci. Technol., 182, 1261–1278. doi:10.1080/00102201003639284
  • Danon, B., Swiderski, A., de Jong, W., Yang, W., and Roekaerts, D.J.E.M. 2011c. Emission and efficiency comparison of different firing modes in a furnace with four HiTAC burners. Combust. Sci. Technol., 183, 686–703. doi:10.1080/00102202.2011.553643
  • Effuggi, A., Gelosa, D., Derudi, M., and Rota, R. 2008. Mild combustion of methane-derived fuel mixtures: Natural gas and biogas. Combust. Sci. Technol., 180, 481–493. doi:10.1080/00102200701741368
  • Ertesvag, I., and Magnussen, B. 2000. The eddy dissipation turbulence energy cascade model. Combust. Sci. Technol., 159, 213–235. doi:10.1080/00102200008935784
  • Galletti, C., Parente, A., Derudi, M., Rota, R., and Tognotti, L. 2009. Numerical and experimental analysis of NO emissions from a lab-scale burner fed with hydrogen-enriched fuels and operating in MILD combustion. Int. J. Hydrogen Energy, 34, 8339–8351. doi:10.1016/j.ijhydene.2009.07.095
  • Galletti, C., Parente, A., and Tognotti, L. 2007. Numerical and experimental investigation of a mild combustion burner. Combust. Flame, 151, 649–664. doi:10.1016/j.combustflame.2007.07.016
  • Grandmaison, E.W., Yimer, I., Becker, H.A., and Sobiesiak, A. 1998. The strong-jet/weak-jet problem and aerodynamic modeling of the CGRI burner. Combust. Flame, 114, 381–396. doi:10.1016/S0010-2180(97)00314-3
  • Gupta, P., Singh, R.S., Sachan, A., Vidyarthi, A.S., and Gupta, A. 2012. Study on biogas production by anaerobic digestion of garden-waste. Fuel, 95, 495–498. doi:10.1016/j.fuel.2011.11.006
  • Hosseini, S.E., Bagheri, G., and Wahid, M.A. 2014. Numerical investigation of biogas flameless combustion. Energy Convers. Manage., 81, 41–50.
  • Hosseini, S.E., and Wahid, M.A. 2013. Biogas utilization: Experimental investigation on biogas flameless combustion in lab-scale furnace. Energy Convers. Manage., 74, 426–432.
  • Hosseini, S.E., Wahid, M.A., and Abuelnuor, A.A.A. 2012. High temperature air combustion: Sustainable technology to low NOx formation. Int. Rev. Mech. Eng., 6, 947–953.
  • Hosseini, S.E., Wahid, M.A., and Aghili, N. 2013. The scenario of greenhouse gases reduction in Malaysia. Renewable Sustainable Energy Rev., 28, 400–409. doi:10.1016/j.rser.2013.08.045
  • Khoshhal, A., Rahimi, M., and Alsairafi, A.A. 2011. CFD study on influence of fuel temperature on NOx emission in a HiTAC furnace. Int. Commun. Heat Mass Transfer, 38, 1421–1427. doi:10.1016/j.icheatmasstransfer.2011.08.008
  • Kim, J.P., Schnell, U., and Scheffknecht, G. 2008. Comparison of different global reaction mechanisms for MILD combustion of natural gas. Combust. Sci. Technol., 180, 565–592. doi:10.1080/00102200701838735
  • Lupant, D., Pesenti, B., Evrard, P., and Lybaert, P. 2007. Numerical and experimental characterization of a self-regenerative flameless oxidation burner operation in a pilot-scale furnace. Combust. Sci. Technol., 179, 437–453. doi:10.1080/00102200600837275
  • Mancini, M., Schwoppe, P., Weber, R., and Orsino, S. 2007. On mathematical modelling of flameless combustion. Combust. Flame, 150, 54–59. doi:10.1016/j.combustflame.2007.03.007
  • Medwell, P.R., Kalt, P.A.M., and Dally, B.B. 2007. Simultaneous imaging of OH, formaldehyde, and temperature of turbulent nonpremixed jet flames in a heated and diluted coflow. Combust. Flame, 148, 48–61. doi:10.1016/j.combustflame.2006.10.002
  • Oldenhof, E., Tummers, M.J., van Veen, E.H., and Roekaerts, D.J.E.M. 2011. Role of entrainment in the stabilisation of jet-in-hot-coflow flames. Combust. Flame, 158, 1553–1563. doi:10.1016/j.combustflame.2010.12.018
  • Parente, A., Galletti, C., and Tognotti, L. 2008. Effect of the combustion model and kinetic mechanism on the MILD combustion in an industrial burner fed with hydrogen enriched fuels. Int. J. Hydrogen Energy, 33, 7553–7564. doi:10.1016/j.ijhydene.2008.09.058
  • Rafidi, N., and Blasiak, W. 2006. Heat transfer characteristics of HiTAC heating furnace using regenerative burners. Appl. Therm. Eng., 26, 2027–2034. doi:10.1016/j.applthermaleng.2005.12.016
  • Scholz, M., Melin, T., and Wessling, M. 2013. Transforming biogas into biomethane using membrane technology. Renewable Sustainable Energy Rev., 17, 199–212. doi:10.1016/j.rser.2012.08.009
  • Seepana, S., and Jayanti, S. 2009. Flame structure and NO generation in oxy-fuel combustion at high pressures. Energy Convers. Manage., 50, 1116–1123. doi:10.1016/j.enconman.2008.11.005
  • Shih, T.-H., Liou, W.W., Shabbir, A., Yang, Z., and Zhu, J. 1995. A new k-ε eddy viscosity model for high reynolds number turbulent flows. Comput. Fluids, 24, 227–238. doi:10.1016/0045-7930(94)00032-T
  • Starr, K., Gabarrell, X., Villalba, G., Talens, L., and Lombardi, L. 2012. Life cycle assessment of biogas upgrading technologies. Waste Manage., 32, 991–999. doi:10.1016/j.wasman.2011.12.016
  • Stefanidis, G.D., Merci, B., Heynderickx, G.J., and Marin, G.B. 2006. CFD simulations of steam cracking furnaces using detailed combustion mechanisms. Comput. Chem. Eng., 30, 635–649. doi:10.1016/j.compchemeng.2005.11.010
  • Taleghani, G., and Shabani Kia, A. 2005. Technical–economical analysis of the Saveh biogas power plant. Renewable Energy, 30, 441–446. doi:10.1016/j.renene.2004.06.004
  • Tsuji, H., Gupta, A.K., Hasegawa, T., Katsuki, M., Kishimoto, K., and Morita, M. 2010. High Temperature Air Combustion: From Energy Conservation to Pollution Reduction. CRC Press, Boca Raton, FL.
  • Van Wylen, G., and Sonntag, R.E. 1982. Introduction to Thermodynamics: Classical and Statistical. Wiley, New York.
  • Wang, L., Liu, Z., Chen, S., and Zheng, C. 2012. Comparison of different global combustion mechanisms under hot and diluted oxidation conditions. Combust. Sci. Technol., 184, 259–276. doi:10.1080/00102202.2011.635612
  • Westbrook, C.K., and Dryer, F.L. 1981. Simplified reaction mechanisms for the oxidation of hydrocarbon fuels in flames. Combust. Sci. Technol., 27, 31–43. doi:10.1080/00102208108946970
  • Yang, W., and Blasiak, W. 2005. Numerical study of fuel temperature influence on single gas jet combustion in highly preheated and oxygen deficient air. Energy, 30, 385–398. doi:10.1016/j.energy.2004.05.011
  • Yang, W., and Blasiak, W. 2006. CFD as applied to high temperature air combustion in industries furnaces. IRFR Combust. J., Article No. 200603, 1–22.
  • Zhang, C., Ishii, T., Hino, Y., and Sugiyama, S. 2000. The numerical and experimental study of non-premixed combustion flames in regenerative furnaces. J. Heat Transfer, 122, 287. doi:10.1115/1.521466

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.