337
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

An Investigation of Thermal Decomposition Kinetics of Nano Zinc Oxide Catalyzed Composite Propellant

&
Pages 1295-1315 | Received 15 Sep 2014, Accepted 25 Mar 2015, Published online: 12 May 2015

REFERENCES

  • Alizadeh-Gheshlaghi, E., Shaabani, B., Khodayari, A., Azizian-Kalandaragh, Y., and Rahimi, R. 2012. Investigation of the catalytic activity of nano-sized CuO, Co3O4 and CuCo2O4 powders on thermal decomposition of ammonium perchlorate. Powder Technol., 217, 330.
  • Chaturvedi, S., and Dave, P.N. 2013. A review on the use of nanometals as catalysts for the thermal decomposition of ammonium perchlorate. J. Saudi Chem. Soc., 17, 135.
  • Duan, G., Yang, X., Chen, J., Huang, G., Lu, L., and Wang, X. 2007. The catalytic effect of nanosized MgO on the decomposition of ammonium perchlorate. Powder Technol., 172, 27.
  • Eslami, A., Hosseini, S., and Pourmortazavi, S. 2008. Thermoanalytical investigation on some boron–fuelled binary pyrotechnic systems. Fuel, 87, 3339.
  • Gao, H.X., Zhao, F.Q., Hu, R.Z., Zhang, H., Dong, H.S., Yao, P., Xu, Z., and Hu, G. 2008. Differential and integral isoconversional non‐linear methods and their application to energetic materials. III. Non‐isothermal decomposition reaction kinetics of benzotrifuroxan. Chin. J. Chem., 26, 1973.
  • Hosseini, S.G., and Eslami, A. 2010. Thermoanalytical investigation of relative reactivity of some nitrate oxidants in tin-fueled pyrotechnic systems. J. Therm. Anal. Calorim., 101, 1111.
  • Ishitha, K., and Ramakrishna, P. 2014. Studies on the role of iron oxide and copper chromite in solid propellant combustion. Combust. Flame, 161, 2717.
  • Janković, B. 2008. Kinetic analysis of the nonisothermal decomposition of potassium metabisulfite using the model-fitting and isoconversional (model-free) methods. Chem. Eng. J., 139, 128.
  • Kishore, K., Verneker, V.P., and Sunitha, M. 1977. Effect of catalyst concentration on burning rate of composite solid propellants. AIAA J., 15, 1649.
  • Kissinger, H.E. 1957. Reaction kinetics in differential thermal analysis. Anal. Chem., 29, 1702.
  • Kohga, M., and Okamoto, K. 2011. Thermal decomposition behaviors and burning characteristics of ammonium nitrate/polytetrahydrofuran/glycerin composite propellant. Combust. Flame, 158, 573.
  • Kreitz, K., Petersen, E., Reid, D., and Seal, S. 2012. Scale-up effects of nanoparticle production on the burning rate of composite propellant. Combust. Sci. Technol., 184, 750.
  • Krishnan, K., Viswanathan, G., Kurian, A., and Ninan, K. 2013. Kinetics of decomposition of nitramine propellant by differential scanning calorimetry. Def. Sci. J., 42, 135.
  • Malik, A.Q. 2013. Thermal and kinetic comparison of various oxidizers used in propellant/pyrotechnic compositions. Caspian J. Appl. Sci. Res., 2, 63.
  • Omivar, H. 2012. Preparation and ethanol sensing properties of ZnO nanoparticles via a novel sol-gel method. ISRN Nanotechnol., 2012, 879480.
  • Patil, P.R., Krishnamurthy, V.E.N., and Joshi, S.S. 2006. Differential scanning calorimetric study of HTPB based composite propellants in presence of nano ferric oxide. Propellants Explos. Pyrotech., 31, 442.
  • Patil, P.R., Krishnamurthy, V.E.N., and Joshi, S.S. 2008. Effect of nano‐copper oxide and copper chromite on the thermal decomposition of ammonium perchlorate. Propellants Explos. Pyrotech., 33, 266.
  • Pourmortazavi, S.M., Hajimirsadeghi, S.S., Kohsari, I., Fathollahi, M., and Hosseini, S.G. 2008. Thermal decomposition of pyrotechnic mixtures containing either aluminum or magnesium powder as fuel. Fuel, 87, 244.
  • Ramamurthy, S., and Shrotri, P. 1996. Catalytic decomposition of ammonium perchlorate a survey. J. Energetic Mater., 14, 97.
  • Rastogi, R., Kishore, K., and Singh, G. 1975. Solid propellant decomposition studies by differential scanning calorimetry. Thermochim. Acta, 12, 89.
  • Rocco, J., Lima, J., Frutuoso, A., Iha, K., Ionashiro, M., Matos, J., and Suárez-Iha, M. 2004. Thermal degradation of a composite solid propellant examined by DSC. J. Therm. Anal. Calorim., 75, 551.
  • Shahid, M., Mazhar, M., Malik, A., Brien, P., and Raftery, J. 2008. Fabrication of copper–zinc oxide composite thin films from single source precursor by aerosol assisted chemical vapour deposition. Polyhedron, 27, 3337.
  • Shamsipur, M., Pourmortazavi, S.M., and Hajimirsadeghi, S.S. 2011. An investigation on decomposition kinetics and thermal properties of copper-fueled pyrotechnic compositions. Combust. Sci. Technol., 183, 575.
  • Shamsipur, M., Pourmortazavi, S.M., Roushani, M., and Miran Beigi, A.A. 2013. Thermal behavior and non-isothermal kinetic studies on titanium hydride–fueled binary pyrotechnic compositions. Combust. Sci. Technol., 185, 122.
  • Shioya, S., Kohga, M., and Naya, T. 2014. Burning characteristics of ammonium perchlorate-based composite propellant supplemented with diatomaceous earth. Combust. Flame, 161, 620.
  • Singh, G., Kapoor, I.P.S., Dubey, S., and Siril, P.F. 2009. Kinetics of thermal decomposition of ammonium perchlorate with nanocrystals of binary transition metal ferrites. Propellants Explos. Pyrotech., 34, 78.
  • Singh, G., Kapoor, I., Dubey, R., and Srivastava, P. 2010. Preparation, characterization and catalytic behavior of CdFe2O4 and Cd nanocrystals on AP, HTPB and composite solid propellants, Part 79. Thermochim. Acta, 511, 112.
  • Sun, X., Qiu, X., Li, L., and Li, G. 2008. ZnO twin-cones: Synthesis, photoluminescence, and catalytic decomposition of ammonium perchlorate. Inorg. Chem., 47, 4146.
  • Sunitha, M., Reghunadhan Nair, C., Krishnan, K., and Ninan, K. 2001. Kinetics of Alder-ene reaction of Tris (2-allylphenoxy) triphenoxycyclotriphosphazene and bismaleimides—A DSC study. Thermochim. Acta, 374, 159.
  • Tang, G., Tian, S., Zhou, Z., Wen, Y., Pang, A., Zhang, Y., Zeng, D., Li, H., Shan, B., and Xie, C. 2014. ZnO micro/nanocrystals with tunable exposed (0001) facets for enhanced catalytic activity on the thermal decomposition of ammonium perchlorate. J. Phys. Chem., 118, 11833.
  • Tonglai, Z., Rongzu, H., Yi, X., and Fuping, L. 1994. The estimation of critical temperatures of thermal explosion for energetic materials using non-isothermal DSC. Thermochim. Acta, 244, 171.
  • Venkatesh, M., Ravi, P., and Tewari, S.P. 2013. Isoconversional kinetic analysis of decomposition of nitroimidazoles: Friedman method vs Flynn–Wall–Ozawa method. J. Phys. Chem. A, 117, 10162.
  • Vlase, T., Vlase, G., Birta, N., and Doca, N. 2007. Comparative results of kinetic data obtained with different methods for complex decomposition steps. J. Therm. Anal. Calorim., 88, 631.
  • Vyazovkin, S., Burnham, A.K., Criado, J.M., Pérez-Maqueda, L.A., Popescu, C., and Sbirrazzuoli, N. 2011. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim. Acta, 520, 1.
  • Wang, L., Shi, X., and Wang, W. 2014. The influences of combinative effect of temperature and humidity on the thermal stability of pyrotechnic mixtures containing strontium nitrate as oxidizer. J. Therm. Anal. Calorim., 117, 985.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.