489
Views
19
CrossRef citations to date
0
Altmetric
Original Articles

Experimental and Numerical Investigation of the Influence of the Air Preheating Temperature on the Performance of a Small-Scale Mild Combustor

, , &
Pages 1724-1741 | Received 12 Nov 2014, Accepted 03 Jun 2015, Published online: 19 Aug 2015

REFERENCES

  • Aminian, J., Galletti, C., Shahhosseini, S., and Tognotti, L. 2012. Numerical investigation of a MILD combustion burner: Analysis of mixing field, chemical kinetics and turbulence-chemistry interaction. Flow Turbul. Combust., 88, 597–623.
  • Arghode, V.K., Gupta, A.K., and Bryden, K.M. 2012. High intensity colorless distributed combustion for ultra low emissions and enhanced performance. Appl. Energy, 92, 822–830.
  • Christo, F.C., and Dally, B.B. 2005. Modeling turbulent reacting jets issuing into a hot and diluted coflow. Combust. Flame, 142, 117–129.
  • Coelho, P.J., and Peters, N. 2001. Numerical simulation of a mild combustion burner. Combust. Flame, 124, 503–518.
  • Dally, B.B., Riesmeier, E., and Peters, N. 2004. Effect of fuel mixture on moderate and intense low oxygen dilution combustion. Combust. Flame, 137, 418–431.
  • Danon, B., de Jong, W., and Roekaerts, D.J.E.M. 2010. Experimental and numerical investigation of a flox combustor firing low calorific value gases. Combust. Sci. Technol., 182, 1261–1278.
  • De, A., Oldenhof, E., Sathiah, P., and Roekaerts, D. 2011. Numerical simulation of Delft-jet-in-hot-coflow (DJHC) flames using the eddy dissipation concept model for turbulence-chemistry interaction. Flow Turbul. Combust., 87, 537–567.
  • Duwig, C., Li, B., Li, Z.S., and Aldén, M. 2012. High resolution imaging of flameless and distributed turbulent combustion. Combust. Flame, 159, 306–316.
  • Duwig, C., Stankovic, D., Fuchs, L., Li, G., and Gutmark, E. 2007. Experimental and numerical study of flameless combustion in a model gas turbine combustor. Combust. Sci. Technol., 180, 279–295.
  • Frassoldati, A., Sharma, P., Cuoci, A., Faravelli, T., and Ranzi, E. 2010. Kinetic and fluid dynamics modeling of methane/hydrogen jet flames in diluted coflow. Appl. Therm. Eng., 30, 376–383.
  • Galletti, C., Parente, A., and Tognotti, L. 2007. Numerical and experimental investigation of a mild combustion burner. Combust. Flame, 151, 649–664.
  • Krishnamurthy, N., Paul, P.J., and Blasiak, W. 2009. Studies on low-intensity oxy-fuel burner. Proc. Combust. Inst., 32, 3139–3146.
  • Kumar, S., Paul, P.J., and Mukunda, H.S. 2002. Studies on a new high-intensity low-emission burner. Proc. Combust. Inst., 29, 1131–1137.
  • Lee, J.G., and Santavicca, D.A. 2003. Experimental diagnostics for the study of combustion instabilities in lean premixed combustors. J. Propul. Power, 19, 735–750.
  • Li, P., Wang, F., Mi, J., Dally, B.B., Mei, Z., Zhang, J., and Parente, A. 2014. Mechanisms of NO formation in MILD combustion of CH4/H2 fuel blends. Int. J. Hydrogen Energy, 39, 19187–19203.
  • Liu, X., and Zheng, H. 2013. Numerical simulation of air inlet conditions influence on the establishment of MILD combustion in stagnation point reverse flow combustor. Math. Probl. Eng., article ID 593601.
  • Magnussen, B.F. 1981. On the structure of turbulence and a generalized eddy dissipation concept for chemical reaction in turbulent flow. Presented at the 19th AIAA Aerospace Science Meeting, AIAA-2006-0962.
  • Magnussen, B.F., and Hjertager, B.H. 1977. On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion. Proc. Combust. Inst., 16, 719–729.
  • Mancini, M., Schwoppe, P., Weber, R., and Orsino, S. 2007. On mathematical modelling of flameless combustion. Combust. Flame, 150, 54–59.
  • Mardani, A., Tabejamaat, S., and Mohammadi, M.B. 2011. Numerical study of the effect of turbulence on rate of reactions in the MILD combustion regime. Combust. Theor. Model., 15, 753–772.
  • Mi, J., Li, P., Dally, B.B., and Craig, R.A. 2009. Importance of initial momentum rate and air-fuel premixing on moderate or intense low oxygen dilution (MILD) combustion in a recuperative furnace. Energy Fuels, 23, 5349–5356.
  • Nakamachi, I., Yasuzawa, K., and Miyahata, T. 1990. Apparatus or method for carrying out combustion in a furnace. U.S. Patent No. 4,945,841.
  • Oldenhof, E., Tummers, M.J., van Veen, E.H., and Roekaerts, D.J.E.M. 2011. Role of entrainment in the stabilisation of jet-in-hot-coflow flames. Combust. Flame, 158, 1553–1563.
  • Orsino, S., Weber, R., and Bollettini, U. 2001. Numerical simulation of combustion of natural gas with high-temperature air. Combust. Sci. Technol., 170, 1–34.
  • Parente, A., Galletti, C., and Tognotti, L. 2008. Effect of the combustion model and kinetic mechanism on the MILD combustion in an industrial burner fed with hydrogen enriched fuels. Int. J. Hydrogen Energy, 33, 7553–7564.
  • Pope, S.B. 1997. Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation. Combust. Theor. Model., 1, 41–63.
  • Rocha, A.M.A., Carvalho, J.A.Jr., and Lacava, P.T. 2008. Gas concentration and temperature in acoustically excited Delft turbulent jet flames. Fuel, 87, 3433–3444.
  • Rottier, C., Lacour, C., Godard, G., Taupin, B., Porcheron, L., Hauguel, R., Carpentier, S., Boukhalfa, A.M., and Honoré, D. 2009. On the effect of air temperature on mild flameless combustion regime of high temperature furnace. In Proceedings of the 4th European Combustion Meeting, Vienna University of Technology, Vienna, Austria, Paper 115.
  • Sankaran, R., Hawkes, E.R., Chen, J.H., Lu, T.F., and Law, C.K. 2007. Structure of a spatially developing turbulent lean methane-air bunsen flame. Proc. Combust. Inst., 31, 1291–1298.
  • Shih, T.-H., Liou, W.W., Shabbir, A., and Zhu, J. 1995. A new k-ε eddy viscosity model for high Reynolds number turbulent flows. Comput. Fluids, 24, 227–238.
  • Sidey, J., and Mastorakos, E. 2015. Visualization of MILD combustion from jets in cross-flow. Proc. Combust. Inst., 35, 3537–3545.
  • Szegö, G.G., Dally, B.B., and Nathan, G.J. 2009. Operational characteristics of a parallel jet MILD combustion burner system. Combust. Flame, 156, 429–438.
  • Veríssimo, A.S., Rocha, A.M.A., and Costa, M. 2011. Operational, combustion and emission characteristics of a small-scale combustor. Energy Fuels, 25, 2469–2480.
  • Veríssimo, A.S., Rocha, A.M.A., and Costa, M. 2013a. Importance of the inlet air velocity on the establishment of flameless combustion in a laboratory combustor. Exp. Therm. Fluid Sci., 44, 75–81.
  • Veríssimo, A.S., Rocha, A.M.A., and Costa, M. 2013b. Experimental study on the influence of the thermal input on the reaction zone under flameless oxidation conditions. Fuel Process. Technol., 106, 423–428.
  • Versteeg, H.K., and Malalasekera, W. 2007. An Introduction to Computational Fluid Dynamics, Prentice Hall, Essex.
  • Weber, R., Dugué, J., Sayre, A., and Horsmann, H. 1993. Scaling characteristics of the aerodynamics and low NOx properties of industrial natural gas burners. IFRF Report no. F/40/y/9.
  • Weber, R., Smart, J.P., and Kamp, W. 2005. On the (MILD) combustion of gaseous, liquid, and solid fuels in high temperature preheated air. Proc. Combust. Inst., 30, 2623–2629.
  • Westbrook, C.K., and Dryer, F.L. 1981. Simplified reaction mechanisms for the oxidation of hydrocarbon fuels in flames. Combust. Sci. Technol., 27, 31–43.
  • Wünning, J.A., and Wünning, J.G. 1997. Flameless oxidation to reduce thermal NO-formation. Prog. Energy Combust. Sci., 23, 81–94.
  • Zhou, B., Costa, M., Li, Z.S., and Aldén, M. 2015. Characterization of the reaction zone structures in a laboratory combustor using optical diagnostics. In Proceedings of the 7th European Combustion Meeting, Budapest, Hungary, March 30– April 2, Paper P4–72.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.