738
Views
26
CrossRef citations to date
0
Altmetric
Original Articles

Numerical Investigation of Transient Soot Evolution Processes in an Aero-Engine Model Combustor

, , &
Pages 1841-1866 | Received 07 Jan 2015, Accepted 19 Jun 2015, Published online: 17 Sep 2015

REFERENCES

  • Agafonov, G.L., Bilera, I.V., Vlasov, P.A., Kolbanovskii, Y.A., Smirnov, V.N., and Tereza, A.M. 2015. Soot formation during the pyrolysis and oxidation of acetylene and ethylene in shock waves. Kinet. Catal., 56, 12–30.
  • Arana, C.P., Pontoni, M., Sen, S., and Puri, I.K. 2004. Field measurements of soot volume fraction in laminar partially premixed coflow ethylene/air flames. Combust. Flame, 138, 362–372.
  • Attili, A., and Bisetti, F. 2013. Application of a robust and efficient Lagrangian particle scheme to soot transport in turbulent flames. Comput. Fluids, 84, 164–175.
  • Attili, A., Bisetti, F., Mueller, M., and Pitsch, H. 2015. Damköhler number effects on soot formation and growth in turbulent nonpremixed flames. Proc. Combust. Inst., 35, 1215–1223.
  • Attili, A., Bisetti, F., Mueller, M.E., and Pitsch, H. 2014. Formation, growth, and transport of soot in a three-dimensional turbulent non-premixed flame. Combust. Flame, 161, 1849–1865.
  • Bhatt, J.S., and Lindstedt, R.P. 2009. Analysis of the impact of agglomeration and surface chemistry models on soot formation and oxidation. Proc. Combust. Inst., 32, 713–720.
  • Bilger, R., Stårner, S., and Kee, R. 1990. On reduced mechanisms for methane-air combustion in nonpremixed flames. Combust. Flame, 80, 135–149.
  • Bisetti, F., Attili, A., and Pitsch, H. 2014. Advancing predictive models for particulate formation in turbulent flames via massively parallel direct numerical simulations. Philos. Trans. R. Soc. London, Ser. A, 372, 20130324.
  • Blacha, T. 2012. Effiziente Rußmodellierung in laminaren und turbulenten Flammen unterschiedlicher Brennstoffe. PhD thesis. Institute of Combustion Technology for Aerospace Engineering Universität Stuttgart, Stuttgart, Germany.
  • Blacha, T., Di Domenico, M., Gerlinger, P., and Aigner, M. 2012. Soot predictions in premixed and non-premixed laminar flames using a sectional approach for PAHs and soot. Combust. Flame, 159, 181–193.
  • Blacha, T., Di Domenico, M., Rachner, M., Gerlinger, P., and Aigner, M. 2011. Modeling of soot and NOx in a full scale turbine engine combustor with detailed chemistry. In Proceedings of the ASME Turbo Expo 2011: Power for Land, Sea and Air, American Society of Mechanical Engineers (ASME), New York, GT2011–45084.
  • Chapman, D.R. 1979. Computational aerodynamics development and outlook. AIAA J., 17, 1293–1313.
  • Choi, H., and Moin, P. 2012. Grid-point requirements for large eddy simulation: Chapman’s estimates revisited. Phys. Fluids, 24, 011702.
  • Chorin, A.J. 1968. Numerical solution of the Navier-Stokes equations. Math. Comput., 22(104), 745–762.
  • D’Anna, A., and Kent, J.H. 2008. A model of particulate and species formation applied to laminar, nonpremixed flames for three aliphatic-hydrocarbon fuels. Combust. Flame, 152, 573–587.
  • Di Domenico, M. 2008. Numerical simulations of soot formation in turbulent flows. PhD thesis. Institute of Combustion Technology for Aerospace Engineering Universität Stuttgart, Stuttgart, Germany.
  • Di Domenico, M., Gerlinger, P., and Aigner, M. 2010. Development and validation of a new soot formation model for gas turbine combustor simulations. Combust. Flame, 157, 246–258.
  • Di Domenico, M., Gerlinger, P., and Noll, B. 2011. Numerical simulations of confined turbulent lean premixed flames using a detailed chemistry combustion model. In Proceedings of the ASME Turbo Expo 2011: Power for Land, Sea and Air, American Society of Mechanical Engineers (ASME), New York, GT2011–45520.
  • Donde, P., Raman, V., Mueller, M.E., and Pitsch, H. 2013. LES/PDF based modeling of soot-turbulence interactions in turbulent flames. Proc. Combust. Inst., 34, 1183–1192.
  • Durbin, P.A. 2002. A perspective on recent developments in RANS modeling. Eng. Turbul. Model. Exp., 5, 3–16.
  • Dworkin, S.B., Zhang, Q., Thomson, M.J., Slavinskaya, N.A., and Riedel, U. 2011. Application of an enhanced PAH growth model to soot formation in a laminar coflow ethylene/air diffusion flame. Combust. Flame, 158, 1682–1695.
  • Eberle, C., Blacha, T., Gerlinger, P., and Aigner, M. 2014. Numerical simulations of soot and NOx distributions in a full scale aero-engine combustor at two different flight altitudes. In Proceedings of the 52nd AIAA Aerospace Sciences Meeting, American Institute of Aeronautics and Astronautics (AIAA), Reston, VA, AIAA 2014–0132.
  • El-Asrag, H., and Menon, S. 2009. Large eddy simulation of soot formation in a turbulent non-premixed jet flame. Combust. Flame, 156, 385–395.
  • Farrace, D., Bolla, M., Wright, Y., and Boulouchos, K. 2013. Predicting in-cylinder soot in a heavy-duty diesel engine for variations in SOI and TDC temperature using the conditional moment closure model. SAE Int. J. Engines, 6, 1580–1593.
  • Figura, L., and Gomez, A. 2014. Structure of incipiently sooting ethylene-nitrogen counterflow diffusion flames at high pressures. Combust. Flame, 161, 1587–1603.
  • Frenklach, M., and Harris, S.J. 1987. Aerosol dynamics modeling using the method of moments. J. Colloid Interface Sci., 118, 252–261.
  • Frenklach, M., and Wang, H. 1994. Detailed mechanism and modeling of soot particle formation. In H. Bockhorn (Ed.), Soot Formation in Combustion, Springer Verlag, Berlin.
  • Geigle, K.P., Hadef, R., and Meier, W. 2014. Soot formation and flame characterization of an aero-engine model combustor burning ethylene at elevated pressure. J. Eng. Gas Turbines Power, 136, 021505–1–021505–7.
  • Geigle, K.P., Köhler, M., O’Loughlin, W., and Meier, W. 2015a. Investigation of soot formation in pressurized swirl flames by laser measurements of temperature, flame structures and soot concentrations. Proc. Combust. Inst. 35, 3373–3380.
  • Geigle, K.P., O’Loughlin, W., and Meier, R.H.W. 2015b. Visualization of soot inception in turbulent pressurized flames by simultaneous measurement of laser-induced fluorescence of polycyclic aromatic hydrocarbons and laser-induced incandescence, and correlation to OH distributions. Appl. Phys. B, 119(4), 717–730.
  • Geigle, K.P., Schneider-Kühnle, Y., Tsurikov, M.S., Hadef, R., Lückerath, R., Krüger, V., Stricker, W., and Aigner, M. 2005. Investigation of laminar pressurized flames for soot model validation using SV-CARS and LII. Proc. Combust. Inst., 30, 1645–1653.
  • Gerlinger, P. 2003. Investigation of an assumed PDF approach for finite-rate chemistry. Combust. Sci. Technol., 175, 841–872.
  • Gerlinger, P., Möbus, H., and Brüggemann, D. 2001. An implicit multigrid method for turbulent combustion. J. Comput. Phys., 167, 247–276.
  • Gerlinger, P., Stoll, P., and Brüggemann, D. 1998. An implicit multigrid method for the simulation of chemically reacting flows. J. Comput. Phys., 146, 322–345.
  • Gicquel, L.Y.M., Staffelbach, G., and Poinsot, T. 2012. Large eddy simulation of gaseous flames in gas turbine combustion chambers. Prog. Energy Combust. Sci., 38, 782–817.
  • Girimaji, S.S. 1991. Assumed β-pdf model for turbulent mixing: validation and extension to multiple scalar mixing. Combust. Sci. Technol., 78, 177–196.
  • Guo, H., and Smallwood, G.J. 2007. The interaction between soot and NO formation in a laminar axisymmetric coflow ethylene/air diffusion flame. Combust. Flame, 149, 225–233.
  • Ivanova, E., Noll, B., Griebel, P., Aigner, M., and Syed, K. 2012. Numerical simulations of turbulent mixing and autoignition of hydrogen fuel at reheat combustor operating conditions. J. Eng. Gas Turbines Power, 134, 041504–01–041504–07.
  • Janus, B., Dreizler, A., and Janicka, J. 2005. Experimental study on stabilization of lifted swirl flames in a model GT combustor. Flow Turbul. Combust., 75, 293–315.
  • Jensen, E.J., and Toon, O.B. 1997. The potential impact of soot particles from aircraft exhaust on cirrus clouds. Geophys. Res. Lett., 24, 249–252.
  • Jochmann, P., Sinigersky, A., Hehle, M., Schäfer, O., Koch, R., and Bauer, H.J. 2006. Numerical simulation of a precessing vortex breakdown. Int. J. Heat Fluid Flow, 27, 192–203.
  • Kärcher, B. (Ed.). 2008. Particles and cirrus clouds. Tech. Rep., German Aerospace Center. Available at: http://www.pa.op.dlr.de/pazi/DLR-Mitteilung_2008-01.pdf.
  • Kim, W., Menon, S., and Mongia, H.C. 1999. Large-eddy simulation of a gas turbine combustor flow. Combust. Sci. Technol., 143, 25–62.
  • Köhler, M., Geigle, K.P., Blacha, T., Gerlinger, P., and Meier, W. 2012. Experimental characterization and numerical simulation of a sooting lifted turbulent jet diffusion flame. Combust. Flame, 159, 2620–2635.
  • Lammel, O., Geigle, K.P., Lückerath, R., Meier., W., and Aigner, M. 2007. Investigation of soot formation and oxidation in a high-pressure gas turbine model combustor by laser techniques. In Proceedings of the ASME Turbo Expo 2007: Power for Land, Sea and Air, American Society of Mechanical Engineers (ASME), New York, GT2007–27902.
  • Lee, C.K. 1975. Estimates of luminous flame radiation from fires. Combust. Flame, 24, 239–244.
  • Lefebvre, A.H. 1969. Radiation from flames in gas turbines and rocket engines. Proc. Combust. Inst., 12, 1247–1253.
  • Leung, K.M., and Lindstedt, R.P. 1991. A simplified reaction mechanism for soot formation in nonpremixed flames. Combust. Flame, 87, 289–305.
  • Lindstedt, P.R. 1994. Simplified soot nucleation and surface growth steps for non-premixed flames. In H. Bockhorn (Ed.), Soot Formation in Combustion, Springer Verlag, Berlin.
  • Lindstedt, R.P., and Waldheim, B.B.O. 2013. Modeling of soot particle size distributions in premixed stagnation flow flames. Proc. Combust. Inst., 34, 1861–1868.
  • Lourier, M., Eberle, C., Noll, B., and Aigner, M. 2015. Influence of turbulence-chemistry interaction modeling on the structure and the stability of a swirl-stabilized flame. In Proceedings of the ASME Turbo Expo 2015: Power for Land, Sea and Air, American Society of Mechanical Engineers (ASME), New York, GT2015–43174.
  • McEnally, C.S., and Pfefferle, L.D. 2000. Experimental study of nonfuel hydrocarbons and soot in coflowing partially premixed ethylene air flames. Combust. Flame, 121, 575–592.
  • Menter, F.R. 1994. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J., 32, 1598–1605.
  • Morgan, N., Kraft, M., Balthasar, M., Wong, D., Frenklach, M., and Mitchell, P. 2007. Numerical simulations of soot aggregation in premixed laminar flames. Proc. Combust. Inst., 31, 693–700.
  • Mosbach, S., Celnik, M.S., Raj, A., Kraft, M., Zhang, H.R., Kubo, S., and Kim, K. 2009. Towards a detailed soot model for internal combustion engines. Combust. Flame, 156, 1156–1165.
  • Moureau, V., Domingo, P., and Vervisch, L. 2011. From large-eddy simulation to direct numerical simulation of a lean premixed swirl flame: Filtered laminar flame-PDF modeling. Combust. Flame, 158, 1340–1357.
  • Mueller, M.E., and Pitsch, H. 2013. Large eddy simulation of soot evolution in an aircraft combustor. Phys. Fluids, 25, 110812.
  • Nakamura, M., Koda, S., Akita, K., 1982. Sooting behavior and radiation in methanol/benzene/air diffusion flames. Proc. Combust. Inst., 19, 1395–1401.
  • Noll, B., Schütz, H., and Aigner, M. 2001. Numerical simulation of high-frequency flow instabilities near an airblast atomizer. In Proceedings of the ASME Turbo Expo 2001: Power for Land, Sea and Air, American Society of Mechanical Engineers (ASME), New York, GT2001–0041.
  • Petzold, A., Ström, J., Ohlsson, S., and Schröder, F.P. 1998. Elemental composition and morphology of ice-crystal residual particles in cirrus clouds and contrails. Atmos. Res., 49, 21–34.
  • Petzold, A., Ström, J., Schröder, F.P., and Kärcher, B. 1999. Carbonaceous aerosol in jet engine exhaust: Emission characteristics and implications for heterogeneous chemical reactions. Atmos. Environ., 33, 2689–2698.
  • Poinsot, T., and Veynante, D. 2005. Theoretical and Numerical Combustion, Edwards, Philadelphia.
  • Pope, C.J., and Howard, J.B. 1997. Simultaneous particle and molecule modeling (SPAMM): An approach for combining sectional aerosol equations and elementary gas-phase reactions. Aerosol Sci. Technol., 27, 73–94.
  • Prause, J., Noll, B., Aigner, M., and Syed, K. 2015. Sensitivity analysis of auto-ignition simulation at gas turbine operating conditions. J. Eng. Gas Turbines Power, 137, 102601–01–102601–07.
  • Qamar, N.H., Alwahabi, Z.T., Chan, Q.N., Nathan, G.J., Roekaerts, D., and King, K.D. 2009. Soot volume fraction in a piloted turbulent jet non-premixed flame of natural gas. Combust. Flame, 156, 1339–1347.
  • Ramírez, J.A., and Cortés, C. 2010. Comparison of different URANS schemes for the simulation of complex swirling flows. Numer. Heat Transfer, Part B, 58, 98–120.
  • Ramírez, J.A., Cortés, C., Carrión, A., Carmona, M., and Legrand, M. 2012. Prediction of flow instabilities in an atmospheric low swirl burner using URANS models. Numer. Heat Transfer, Part A, 62, 479–498.
  • Richter, H., Granata, S., Green, W.H., and Howard, J.B. 2005. Detailed modeling of PAH and soot formation in a laminar premixed benzene/oxygen/argon low-pressure flame. Proc. Combust. Inst., 30, 1397–1405.
  • Saffaripour, M., Zabeti, P., Dworkin, S.B., Zhang, Q., Guo, H., Liu, F., Smallwood, G.J., and Thomson, M.J. 2011. A numerical and experimental study of a laminar sooting coflow Jet-A1 diffusion flame. Proc. Combust. Inst., 33, 601–608.
  • Saji, C.B., Balaji, C., and Sundararajan, T. 2008. Investigation of soot transport and radiative heat transfer in an ethylene jet diffusion flame. Int. J. Heat Mass Transfer, 51, 4287–4299.
  • Santoro, R.J., Yeh, T.T., Horvath, J.J., and Semerjian, H.G. 1987. The transport and growth of soot particles in laminar diffusion flames. Combust. Sci. Technol., 53, 89–115.
  • Schneider, E., Maltsev, A., Sadiki, A., and Janicka, J. 2008. Study on the potential of BML-approach and G-equation concept-based models for predicting swirling partially premixed combustion systems: URANS computations. Combust. Flame, 152, 548–572.
  • Slavinskaya, N.A., and Frank, P. 2009. A modelling study of aromatic soot precursors formation in laminar methane and ethene flames. Combust. Flame, 156, 1705–1722.
  • Slavinskaya, N.A., and Haidn, O.J. 2008. Reduced chemical model for high pressure methane combustion with PAH formation. In Proceedings of the 46th AIAA Aerospace Sciences Meeting, American Institute of Aeronautics and Astronautics (AIAA), Reston, VA, AIAA 2008–1012.
  • Smooke, M.D., Long, M.B., Connelly, B.C., Colket, M.B., and Hall, R.J. 2005. Soot formation in laminar diffusion flames. Combust. Flame, 143, 613–628.
  • Spalart, P.R. 2000. Strategies for turbulence modelling and simulations. Int. J. Heat Fluid Flow, 21, 252–263.
  • Stöhr, M., Arndt, C.M., and Meier, W. 2015a. Transient effects of fuel-air mixing in a partially-premixed turbulent swirl flame. Proc. Combust. Inst., 35, 3327–3335.
  • Stöhr, M., Geigle, K.P., Hadef, R., and Meier, W. 2015b. Correlated velocity and soot measurements in a gas turbine model combustor. Unpublished data ( In preparation for publication).
  • Tsurikov, M.S., Geigle, K.P., Krüger, V., Schneider-Kühnle, Y., Stricker, W., Lückerath, R., Hadef, R., and Aigner, M. 2005. Laser-based investigation of soot formation in laminar premixed flames at atmospheric and elevated pressures. Combust. Sci. Technol., 177, 1835–1862.
  • Vlasov, P.A., and Warnatz, J. 2002. Detailed kinetic modeling of soot formation in hydrocarbon pyrolysis behind shock waves. Proc. Combust. Inst., 29, 2335–2341.
  • Wankhede, M.J., Bressloff, N.W., Keane, A.J., Caracciolo, L., and Zedda, M. 2010. An analysis of unstable flow dynamics and flashback mechanism inside a swirl stabilised lean burn combustor. In Proceedings of the ASME Turbo Expo 2010: Power for Land, Sea and Air.
  • Wegner, B., Maltsev, A., Schneider, C., Sadiki, A., Dreizler, A., and Janicka, J. 2004. Assessment of unsteady RANS in predicting swirl flow instability based on LES and experiments. Int. J. Heat Fluid Flow, 25, 528–536.
  • Yunardi, Woolley, R.M., and Fairweather, M. 2008. Conditional moment closure prediction of soot formation in turbulent, nonpremixed ethylene flames. Combust. Flame, 152, 360–376.
  • Zamuner, B., and Dupoirieux, F. 2000. Numerical simulation of soot formation in a turbulent flame with a monte-carlo PDF approach and detailed chemistry. Combust. Sci. Technol., 158, 407–438.
  • Zhao, B., Yang, Z., Li, Z., Johnsten, M.V., and Wang, H. 2005. Particle size distribution function of incipient soot in laminar premixed ethylene flames: Effect of flame temperature. Proc. Combust. Inst., 30, 1441–1448.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.