345
Views
15
CrossRef citations to date
0
Altmetric
Articles

Modeling of the Pore Structure Evolution in Porous Char Particles During Combustion

&
Pages 207-232 | Received 21 May 2015, Accepted 29 Sep 2015, Published online: 23 Dec 2015

References

  • Aarna, I., and Suuberg, E.M. 1998. Changes in reactive surface area and porosity during char oxidation. Proc. Combust. Inst., 27, 2933–2939.
  • Adams, K.E., Glasson, D.R., and Jayaweera, S.A.A. 1989. Development of porosity during the combustion of coals and cokes. Carbon, 27, 95–101.
  • Ballal, G., and Zygourakis, K. 1987a. Evolution of pore surface area during noncatalytic gas-solid reactions. 1. Model development. Ind. Eng. Chem. Res., 26, 911–921.
  • Ballal, G., and Zygourakis, K. 1987b. Evolution of pore surface area during noncatalytic gas-solid reactions. 2. Experimental results and model validation. Ind. Eng. Chem. Res., 26, 1787–1796.
  • Ballester, J., and Jiménez, S. 2005. Kinetic parameters for the oxidation of pulverised coal as measured from drop tube tests. Combust. Flame, 142, 210–222.
  • Bar-Ziv, E., and Kantorovich, I.I. 2001. Mutual effects of porosity and reactivity in char oxidation. Prog. Energy Combust. Sci., 27, 667–697.
  • Bhatia, S.K., and Perlmutter, D.D. 1980. A random pore model for fluid-solid reactions: I. Isothermal, kinetic control. AIChE J., 26, 379–386.
  • Bhatia, S.K., and Perlmutter, D.D. 1981. A random pore model for fluid-solid reactions: II. Diffusion and transport effects. AIChE J., 27, 247–254.
  • Cao, L., and He, R. 2010. Gas diffusion in fractal porous media. Combust. Sci. Technol., 182, 822–841.
  • Costa, M., Araujo, A.D., Da Silva, H.F., and Andrade, J.S. 2003. Scaling behavior of diffusion and reaction processes in percolating porous media. Phys. Rev. E, 67, 061408.
  • Fairbridge, C., Ng, S.H., and Palmer, A.D. 1986. Fractal analysis of gas-adsorption on syncrude coke. Fuel, 65, 1759–1762.
  • Fei, H., Hu, S., Xiang, J., Sun, L., Fu, P., and Chen, G. 2011. Study on coal chars combustion under O2/CO2 atmosphere with fractal random pore model. Fuel, 90, 441–448.
  • Feng, B., and Bhatia, S.K. 2003. Variation of the pore structure of coal chars during gasification. Carbon, 41, 507–523.
  • Friesen, W.I., and Ogunsola, O.I. 1995. Mercury porosimetry of upgraded western Canadian coals. Fuel, 74, 604–609.
  • Gavals, G.R. 1980. A random capillary model with application to char gasification at chemically controlled rates. AIChE J., 26, 577–585.
  • Gefen, Y., Aharony, A., and Alexander, S. 1983. Anomalous diffusion on percolating clusters. Phys. Rev. Lett., 50, 77–80.
  • Gombosi, T.I. 1994. Gas Kinetic Theory, Cambridge University Press, Cambridge, UK.
  • He, R., Sato, J., and Chen, C.H. 2002. Modeling char combustion with fractal pore effects. Combust. Sci. Technol., 174, 19–37.
  • He, R., Xu, X., Chen, C., Fan, H., and Zhang, B. 1998. Evolution of pore fractal dimensions for burning porous chars. Fuel, 77, 1291–1295.
  • He, W., He, R., Ito, T., Suda, T., and Sato, J.I. 2011. Numerical investigations of CO/CO2 ratio in char combustion. Combust. Sci. Technol., 183, 868–882.
  • He, W., Liu, Y., He, R., Ito, T., Suda, T., Fujimori, T., Ikeda, H., and Sato, J.I. 2013. Combustion rate for char with fractal pore characteristics. Combust. Sci. Technol., 185, 1624–1643.
  • House, J.E. 2007. Principles of Chemical Kinetics, Academic Press, Pittsburgh, PA.
  • Howard, J.B., Williams, G.C., and Fine, D.H. 1973. Kinetics of carbon monoxide oxidation in postflame gases. Proc. Combust. Inst., 14, 975–986.
  • Hurt, R.H., Dudek, D.R., Longwell, J.P., and Sarofim, A.F. 1988. The phenomenon of gasification-induced carbon densification and its influence on pore structure evolution. Carbon, 26, 433–449.
  • Levitz, P. 1997. From Knudsen diffusion to Levy walks. Europhys. Lett., 39, 593–598.
  • Lewis, P.F., and Simons, G.A. 1979. Char gasification: Part II. Oxidation results. Combust. Sci. Technol., 20, 117–124.
  • Liang, Z., He, R., Chen, Q., Xu, X., and Sato, J.I. 2007. Fractal generation of char pores through random walk. Combust. Sci. Technol., 179, 637–661.
  • Liu, Y., and He, R. 2015. Variation of apparent reaction order in char combustion and its effect on a fractal char combustion model. Combust. Sci. Technol., 187, 1638–1660.
  • Lorenz, H., Carrea, E., Tamura, M., and Haas, J. 2000. The role of char surface structure development in pulverized fuel combustion. Fuel, 79, 1161–1172.
  • Lu, L.M., Sahajwalla, V., and Harris, D. 2001. Coal char reactivity and structural evolution during combustion—Factors influencing blast furnace pulverized coal injection operation. Metall. Mater. Trans. B, 32, 811–820.
  • McMahon, P.J., Snook, I.K., Moss, S.D., and Johnston, P.R. 1999. Influence of fractal pores on the oxidation behavior of brown coal. Energy Fuels, 13, 965–968.
  • Pfeifer, P., and Avnir, D. 1983. Chemistry in noninteger dimensions between two and three: I. Fractal theory of heterogeneous surfaces. J. Chem. Phys., 79, 3558–3565.
  • Sadhukhan, A.K., Gupta, P., and Saha, R.K. 2009. Characterization of porous structure of coal char from a single devolatilized coal particle: Coal combustion in a fluidized bed. Fuel Process. Technol., 90, 692–700.
  • Salatino, P., Zimbardi, F., and Masi, S. 1993. A fractal approach to the analysis of low-temperature combustion-rate of a coal char: I. Experimental results. Carbon, 31, 501–508.
  • Sandmann Jr., C.W., and Zygourakis, K. 1986. Evolution of pore structure during gas-solid reactions: discrete models. Chem. Eng. Sci., 41, 733–739.
  • Simons, G.A. 1979a. Char gasification: Part I. Transport model. Combust. Sci. Technol., 20, 107–116.
  • Simons, G.A. 1979b. The structure of coal char: Part II. Pore combination. Combust. Sci. Technol., 19, 227–235.
  • Simons, G.A. 1982. The pore tree structure of porous char. Proc. Combust. Inst., 19, 1067–1076.
  • Simons, G.A., and Finson, M.L. 1979. The structure of coal char: Part I. Pore branching. Combust. Sci. Technol., 19, 217–225.
  • Sircar, I., Sane, A., Wang, W., and Gore, J.P. 2014. Experimental and modeling study of pinewood char gasification with CO2. Fuel, 119, 38–46.
  • Smith, I.W. 1982. The combustion rates of coal chars: A review. Proc. Combust. Inst., 19, 1045–1065.
  • Struis, R.P.W.J., von Scala, C., Stucki, S., and Prins, R. 2002. Gasification reactivity of charcoal with CO2. Part I: Conversion and structural phenomena. Chem. Eng. Sci., 57, 3581–3592.
  • Su, J.L., and Perlmutter, D.D. 1985. Effect of pore structure on char oxidation kinetics. AIChE J., 31, 973–981.
  • Wang, X., Zeng, X., Yang, H., and Zhao, D. 2012. General modeling and numerical simulation of the burning characteristics of porous chars. Combust. Flame, 159, 2457–2465.
  • Yamashita, T., Fujii, Y., Morozumi, Y., Aoki, H., and Miura, T. 2006. Modeling of gasification and fragmentation behavior of char particles having complicated structures. Combust. Flame, 146, 85–94.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.