1,217
Views
95
CrossRef citations to date
0
Altmetric
Articles

Experimental Uncertainties of the Heat Flux Method for Measuring Burning Velocities

, , , , , & show all
Pages 853-894 | Received 15 Oct 2015, Accepted 23 Nov 2015, Published online: 09 May 2016

References

  • Alekseev, V.A., Christensen, M., Berrocal, E., Nilsson, E.J.K., and Konnov, A.A. 2015a. Laminar premixed flat non-stretched lean flames of hydrogen in air. Combust. Flame, 162, 4061.
  • Alekseev, V.A., Christensen, M., and Konnov, A.A. 2015b. The effect of temperature on the adiabatic burning velocities of diluted hydrogen flames: A kinetic study using an updated mechanism. Combust. Flame, 162, 1884.
  • Bardin, M.E., Ivanov, E.V., Nilsson, E.J.K., Vinokurov, V.A., and Konnov, A.A. 2013. Laminar burning velocities of dimethyl carbonate with air. Energy Fuels, 27, 5513.
  • Bosschaart, K.J. 2002. Analysis of the heat flux method for measuring burning velocities. PhD thesis. Technische Universiteit Eindhoven, Eindhoven, The Netherlands.
  • Bosschaart, K.J., and de Goey, L.P.H. 2003. Detailed analysis of the heat flux method for measuring burning velocities. Combust. Flame, 132, 170.
  • Bosschaart, K.J., and de Goey, L.P.H. 2004a. The laminar burning velocity of flames propagating in mixtures of hydrocarbons and air measured with the heat flux method. Combust. Flame, 136, 261.
  • Bosschaart, K.J., and de Goey, L.P.H. 2004b. Extension of the heat flux method to subatmospheric pressures. Combust. Sci. Technol., 176, 1537.
  • Bosschaart, K.J., Versluis, M., Knikker, R., Meer Van Der, Th.H., Schreel, K.R.A.M., de Goey, L.P.H., and Van Steenhoven, A.A. 2001. The heat flux method for producing burner stabilized adiabatic flames: An evaluation with CARS thermometry. Combust. Sci. Technol., 169, 69.
  • Botha, J.P., and Spalding, D.B. 1954. The laminar flame speed of propane/air mixtures with heat extraction from the flame. Proc. R. Soc. London, Ser. A, 225, 71.
  • Bronkhorst High-Tech B.V. 2010. Mass flow/pressure meters and controllers for gases and liquids. Instruction Manual 9.17.001M, Bronkhorst High-Tech, Ruurlo, The Netherlands.
  • Burke, S.M., Burke, U., Mc Donagh, R., Mathieu, O., Osorio, I., Keesee, C., Morones, A., Petersen, E.L., Wang, W., DeVerter, T.A., Oehlschlaeger, M.A., Rhodes, B., Hanson, R.K., Davidson, D.F., Weber, B.W., Sung, C.-J., Santner, J., Ju, Y., Haas, F.M., Dryer, F.L., Volkov, E.N., Nilsson, E.J.K., Konnov, A.A., Alrefae, M., Khaled, F., Farooq, A., Dirrenberger, P., Glaude, P.-A., Battin-Leclerc, F., and Curran, H.J. 2015. An experimental and modeling study of propene oxidation. Part 2: Ignition delay time and flame speed measurements. Combust. Flame, 162, 296.
  • Chen, Z. 2015. On the accuracy of laminar flame speeds measured from outwardly propagating spherical flames: Methane/air at normal temperature and pressure. Combust. Flame, 162, 2442.
  • Chong, C.T., and Hochgreb, S. 2011. Measurements of laminar flame speeds of liquid fuels: Jet-A1, diesel, palm methyl esters and blends using particle imaging velocimetry (PIV). Proc. Combust. Inst., 33, 979.
  • Christensen, M., Abebe, M.T., Nilsson, E.J.K., and Konnov, A.A. 2015a. Kinetics of premixed acetaldehyde + air flames. Proc. Combust. Inst., 35, 499.
  • Christensen, M., Alekseev, V.A., Nilsson, E.J.K., and Konnov, A.A. 2013. Effects of hydrogen enrichment and steam dilution on methane + air flames. Paper P1-70. Presented at the European Combustion Meeting, Lund, Sweden, June 25–28.
  • Christensen, M., Nilsson, E.J.K., and Konnov, A.A. 2011. Laminar burning velocities of formaldehyde + methanol flames. Presented at the European Combustion Meeting, Cardiff, Wales, June 28–July 1.
  • Christensen, M., Nilsson, E.J.K., and Konnov, A.A. 2015b. The temperature dependence of the laminar burning velocities of methyl formate + air flames. Fuel, 157, 162.
  • Coppens, F.H.V., De Ruyck, J., and Konnov, A.A. 2007. The effects of composition on burning velocity and nitric oxide formation in laminar premixed flames of CH4 + H2 + O2 + N2. Combust. Flame, 149, 409.
  • Coppens, F.H.V., and Konnov, A.A. 2008. The effects of enrichment by H2 on propagation speeds in adiabatic flat and cellular premixed flames of CH4 + O2 + CO2. Fuel, 87, 2866.
  • Davis, S.G., and Law, C.K. 1998. Laminar flame speeds and oxidation kinetics of iso-octane-air and n-heptane-air flames. Proc. Combust. Inst., 27, 521.
  • de Goey, L.P.H., Somers, L.M.T., Bosch, W.M.M.L., and Mallens, R.M.M. 1995. Modeling of the small scale structure of flat burner-stabilized flames. Combust. Sci. Technol., 104, 387.
  • de Goey, L.P.H., van Maaren, A., and Quax, R.M. 1993. Stabilization of adiabatic premixed laminar flames on a flat flame burner. Combust. Sci. Technol., 92, 201.
  • Devore, J.L. 2012. Probability and Statistics for Engineering and the Sciences, 8th ed., Brooks/Cole, Cengage Learning, Boston, MA.
  • Dirrenberger, P., Glaude, P.A., Bounaceur, R., Le Gall, H., Pires, A. da Cruz, Konnov, A.A., and Battin-Leclerc, F. 2014. Laminar burning velocity of gasolines with addition of ethanol. Fuel, 115, 162.
  • Dirrenberger, P., Glaude, P.A., Le Gall, H., Bounaceur, R., Herbinet, O., Battin-Leclerc, F., and Konnov, A.A. 2011a. Laminar flame velocity of components of natural gas. Paper No. GT2011-46312. Presented at the ASME Turbo Expo, Vancouver, British Columbia, Canada, June 6–10.
  • Dirrenberger, P., Le Gall, H., Bounaceur, R., Glaude, P.-A., and Battin-Leclerc, F. 2015. Measurements of laminar burning velocities above atmospheric pressure using the heat flux method―Application to the case of n-pentane. Energy Fuels, 29, 398.
  • Dirrenberger, P., Le Gall, H., Bounaceur, R., Herbinet, O., Glaude, P.-A., Konnov, A., and Battin-Leclerc, F. 2011b. Measurements of laminar flame velocity for components of natural gas. Energy Fuels, 25, 3875.
  • Dyakov, I.V., De Ruyck, J., and Konnov, A.A. 2007. Probe sampling measurements and modeling of nitric oxide formation in ethane + air flames. Fuel, 86, 98.
  • Dyakov, I.V., Konnov, A.A., de Ruyck, J., Bosschaart, K.J., Brock, E.C.M., and de Goey, L.P.H. 2001. Measurement of adiabatic burning velocity in methane-oxygen-nitrogen mixtures. Combust. Sci. Technol., 172, 81.
  • Egolfopoulos, F.N., Hansen, N., Ju, Y., Kohse-Höinghaus, K., Law, C.K., and Qi, F. 2014. Advances and challenges in laminar flame experiments and implications for combustion chemistry. Prog. Energy Combust. Sci., 43, 36.
  • Evertsen, R., Van Oijen, J.A., Hermanns, R.T.E., De Goey, L.P.H., and Ter Meulen, J.J. 2003. Measurements of absolute concentrations of CH in a premixed atmospheric flat flame by cavity ring-down spectroscopy. Combust. Flame, 132, 34.
  • FLUIDAT® on the Net. 2015. Available at: https://www.fluidat.com.
  • Gillespie, F., Metcalfe, W.K., Dirrenberger, P., Herbinet, O., Glaude, P.-A., Battin-Leclerc, F., and Curran, H.J. 2012. Measurements of flat-flame velocities of diethyl ether in air. Energy, 43, 140.
  • Goswami, M., Coumans, K., Bastiaans, R.J.M., Konnov, A.A., and de Goey, L.P.H. 2014. Numerical simulations of flat laminar premixed methane-air flames at elevated pressure. Combust. Sci. Technol., 186, 1447.
  • Goswami, M., Derks, S.C.R., Coumans, K., Slikker, W.J., de Andrade Oliveira, M.H., Bastiaans, R.J.M., Luijten, C.C.M., de Goey, L.P.H., and Konnov, A.A. 2013a. The effect of elevated pressures on the laminar burning velocity of methane + air mixtures. Combust. Flame, 160, 1627.
  • Goswami, M., Wustmans, M., Dam, N.J., Bastiaans, R.J.M., de Goey, L.P.H., and Konnov, A.A. 2013b. Temperature measurement for the heat flux method using ZnO:Zn thermophosphor. Paper P3-22. Presented at the European Combustion Meeting, Lund, Sweden, June 25–28.
  • Haas-Wittmüß, R., and Hermanns, R.T.E. 2015. Measurements of the laminar burning velocity of ethanol-water-air mixtures. Paper P3-38. Presented at the European Combustion Meeting, Budapest, Hungary, March 30–April 2.
  • Haas-Wittmüß, R., Thiele, M., and Hermanns, R.T.E. 2013. Adaptation of the heat flux method for the measurement of laminar adiabatic burning velocities of liquid fuels. Paper P3-38. Presented at the European Combustion Meeting, Lund, Sweden, June 25–28.
  • He, Y., Wang, Z., Weng, W., Zhu, Y., Zhou, J., and Cen, K. 2014. Effects of CO content on laminar burning velocity of typical syngas by heat flux method and kinetic modeling. Int. J. Hydrogen Energy, 39, 9534.
  • Henshaw, P.F., D’Andrea, T., Mann, K.R.C., and Ting, D.S.-K. 2005. Premixed ammonia-methane-air combustion. Combust. Sci. Technol., 177, 2151.
  • Hermanns, R.T.E. 2007. Laminar burning velocities of methane-hydrogen-air mixtures. PhD thesis. Eindhoven University of Technology, Eindhoven, The Netherlands.
  • Hermanns, R.T.E., Konnov, A.A., Bastiaans, R.J.M., and de Goey, L.P.H. 2007. Laminar burning velocities of diluted hydrogen−oxygen−nitrogen mixtures. Energy Fuels, 21, 1977.
  • Hermanns, R.T.E., Konnov, A.A., Bastiaans, R.J.M., de Goey, L.P.H., Lucka, K., and Köhne, H. 2010. Effects of temperature and composition on the laminar burning velocity of CH4 + H2 + O2 + N2 flames. Fuel, 89, 114.
  • Katshiatshia, H.M., Nilsson, E.J.K., Dias, V., Jeanmart, H., and Konnov, A.A. 2015. Experimental studies and kinetic modeling of ethyl valerate: Flat flame structures and laminar burning velocities. Paper P3-57. Presented at the European Combustion Meeting, Budapest, Hungary, March 30–April 2.
  • Knorsch, T., Zackel, A., Mamaikin, D., Zigan, L., and Wensing, M. 2014. Comparison of different gasoline alternative fuels in terms of laminar burning velocity at increased gas temperatures and exhaust gas recirculation rates. Energy Fuels, 28, 1446.
  • Konnov, A.A., and Dyakov, I.V. 2004. Measurement of propagation speeds in adiabatic flat and cellular premixed flames of C2H6 +O2 + CO2. Combust. Flame, 136, 371.
  • Konnov, A.A., and Dyakov, I.V. 2005. Measurement of propagation speeds in adiabatic cellular premixed flames of CH4 + O2 + CO2. Exp. Therm. Fluid Sci., 29, 901.
  • Konnov, A.A., and Dyakov, I.V. 2007. Experimental study of adiabatic cellular premixed flames of methane (ethane, propane) + oxygen + carbon dioxide mixtures. Combust. Sci. Technol., 179, 747.
  • Konnov, A.A., and Dyakov, I.V. 2009. Nitrous oxide conversion in laminar premixed flames of CH4 + O2 + Ar. Proc. Combust. Inst., 32, 319.
  • Konnov, A.A., Dyakov, I.V., and De Ruyck, J. 2001. Probe sampling measurements and modeling of nitric oxide formation in methane-air flames. Combust. Sci. Technol., 169, 127.
  • Konnov, A.A., Dyakov, I.V., and De Ruyck, J. 2008. The effects of composition on the burning velocity and NO formation in premixed flames of C2H4 + O2 + N2. Exp. Therm. Fluid Sci., 32, 1412.
  • Konnov, A.A., Meuwissen, R.J., and de Goey, L.P.H. 2011. The temperature dependence of the laminar burning velocity of ethanol flames. Proc. Combust. Inst., 33, 1011.
  • Konnov, A.A., Puig Alvarez, G., Rybitskaya, I.V., and De Ruyck, J. 2009. The effects of enrichment by carbon monoxide on adiabatic burning velocity and nitric oxide formation in methane flames. Combust. Sci. Technol., 181, 117.
  • Konnov, A.A., Riemeijer, R., and de Goey, L.P.H. 2010. Adiabatic laminar burning velocities of CH4 + H2 + air flames at low pressures. Fuel, 89, 1392.
  • Konnov, A.A., Riemeijer, R., Kornilov, V.N., and de Goey, L.P.H. 2013. 2D effects in laminar premixed flames stabilized on a flat flame burner. Exp. Therm. Fluid Sci., 47, 213.
  • Kumar, K., Freeh, J.E., Sung, C.J., and Huang, Y. 2007. Laminar flame speeds of preheated iso-octane/O2/N2 and n-heptane/O2/N2 mixtures. J. Propuls. Power, 23, 428.
  • Lammers, F.A., and de Goey, L.P.H. 2004. The influence of gas radiation on the temperature decrease above a burner with a flat porous inert surface. Combust. Flame, 136, 533.
  • Lewis, B., and von Elbe, G. 1987. Combustion, Flames and Explosions of Gases, 3rd ed., Academic Press, Orlando, FL.
  • Li, B., Linden, J., Li, Z.S., Konnov, A.A., Aldén, M., and de Goey, L.P.H. 2011. Accurate measurements of laminar burning velocity using the heat flux method and thermographic phosphor technique. Proc. Combust. Inst., 33, 939.
  • Naucler, J.D., Christensen, M., Nilsson, E.J.K., and Konnov, A.A. 2012. Oxy-fuel combustion of ethanol in premixed flames. Energy Fuels, 26, 4269.
  • Naucler, J.D., Nilsson, E.J.K., and Konnov, A.A. 2015a. Laminar burning velocity of nitromethane + air flames: A comparison of flat and spherical flames. Combust. Flame, 162, 3801.
  • Naucler, J.D., Sileghem, L., Nilsson, E.J.K., Verhelst, S., and Konnov, A.A. 2015b. Performance of methanol kinetic mechanisms at oxy-fuel conditions. Combust. Flame, 162, 1719.
  • Niemann, U., Seshadri, K., and Williams, F.A. 2015. Accuracies of laminar counterflow flame experiments. Combust. Flame, 162, 1540.
  • Nilsson, E.J.K., de Goey, L.P.H., and Konnov, A.A. 2013. Laminar burning velocities of acetone in air at room and elevated temperatures. Fuel, 105, 496.
  • Nilsson, E.J.K., and Konnov, A.A. 2013. Flame studies of oxygenates. In: F. Battin-Leclerc, J.M. Simmie, and E. Blurock (Eds.). Cleaner Combustion: Developing Detailed Chemical Kinetic Models, Springer-Verlag, London, UK, pp. 231–280.
  • Nilsson, E.J.K., and Konnov, A.A. 2015. Trends in laminar burning velocities of C2–C7 esters. Paper P3-42. Presented at the European Combustion Meeting, Budapest, Hungary, March 30–April 2.
  • OMEGA Engineering, Inc. 2015. Wire Color Codes and Limits of Error. Available at: http://www.omega.com/techref/colorcodes.html.
  • Ranzi, E., Frassoldati, A., Grana, R., Cuoci, A., Faravelli, T., Kelley, A.P., and Law, C.K. 2012. Hierarchical and comparative kinetic modeling of laminar flame speeds of hydrocarbon and oxygenated fuels. Prog. Energy Combust. Sci., 38, 468.
  • Ratna Kishore, V., Duhan, N., Ravi, M.R., and Ray, A. 2008. Measurement of adiabatic burning velocity in natural gas-like mixtures. Exp. Therm. Fluid Sci., 33, 10.
  • Ratna Kishore, V., Muchahary, R., Ray, A., and Ravi, M.R. 2009. Adiabatic burning velocity of H2–O2 mixtures diluted with CO2/N2/Ar. Int. J. Hydrogen Energy, 34, 8378.
  • Ratna Kishore, V., Ravi, M.R., and Ray, A. 2011. Adiabatic burning velocity and cellular flame characteristics of H2–CO–CO2–air mixtures. Combust. Flame, 158, 2149.
  • Rau, F., Hartl, S., Voss, S., Still, M., Hasse, C., and Trimis, D. 2015. Laminar burning velocity measurements using the heat flux method and numerical predictions of iso-octane/ethanol blends for different preheat temperatures. Fuel, 140, 10.
  • Sileghem, L., Alekseev, V.A., Vancoillie, J., Nilsson, E.J.K., Verhelst, S., and Konnov, A.A. 2014. Laminar burning velocities of primary reference fuels and simple alcohols. Fuel, 115, 32.
  • Sileghem, L., Alekseev, V.A., Vancoillie, J., Van Geem, K.M., Nilsson, E.J.K., Verhelst, S., and Konnov, A.A. 2013. Laminar burning velocity of gasoline and the gasoline surrogate components iso-octane, n-heptane and toluene. Fuel, 112, 355.
  • van Lipzig, J.P.J., Nilsson, E.J.K., de Goey, L.P.H., and Konnov, A.A. 2011. Laminar burning velocities of n-heptane, iso-octane, ethanol and their binary and tertiary mixtures. Fuel, 90, 2773.
  • van Maaren, A., and de Goey, L.P.H. 1994. Laser Doppler thermometry in flat flames. Combust. Sci. Technol., 99, 105.
  • van Maaren, A., Tsung, D.S., and de Goey, L.P.H. 1994. Measurement of flame temperature and adiabatic burning velocity of methane/air mixtures. Combust. Sci. Technol., 96, 327.
  • Vancoillie, J., Christensen, M., Nilsson, E.J.K., Verhelst, S., and Konnov, A.A. 2012. Temperature dependence of the laminar burning velocity of methanol flames. Energy Fuels, 26, 1557.
  • Vancoillie, J., Christensen, M., Nilsson, E.J.K., Verhelst, S., and Konnov, A.A. 2013. The effects of dilution with nitrogen and steam on the laminar burning velocity of methanol at room and elevated temperatures. Fuel, 105, 732.
  • Voss, S., Hartl, S., and Hasse, C. 2014. Determination of laminar burning velocities for lean low calorific H2/N2 and H2/CO/N2 gas mixtures. Int. J. Hydrogen Energy, 39, 19810.
  • Wang, H., and Sheen, D.A. 2015. Combustion kinetic model uncertainty quantification, propagation and minimization. Prog. Energy Combust. Sci., 47, 1.
  • Wang, Z.H., Weng, W.B., He, Y., Li, Z.S., and Cen, K.F. 2015. Effect of H2/CO ratio and N2/CO2 dilution rate on laminar burning velocity of syngas investigated by direct measurement and simulation. Fuel, 141, 285.
  • Wang, Z.H., Yang, L., Li, B., Li, Z.S., Sun, Z.W., Aldén, M., Cen, K.F., and Konnov, A.A. 2012. Investigation of combustion enhancement by ozone additive in CH4/air flames using direct laminar burning velocity measurements and kinetic simulations. Combust. Flame, 159, 120.
  • Weng, W.B., Wang, Z.H., He, Y., Whiddon, R., Zhou, Y.J., Li, Z.S., and Cen, K.F. 2015. Effect of N2/CO2 dilution on laminar burning velocity of H2–CO–O2 oxy-fuel premixed flame. Int. J. Hydrogen Energy, 40, 1203.
  • Yan, B., Wu, Y., Liu, C., Yu, J.F., Li, B., Li, Z.S., Chen, G., Bai, X.S., Aldén, M., and Konnov, A.A. 2011. Experimental and modeling study of laminar burning velocity of biomass derived gases/air mixtures. Int. J. Hydrogen Energy, 36, 3769.
  • Yu, J.F., Yu, R., Fan, X.Q., Christensen, M., Konnov, A.A., and Bai, X.S. 2013. Onset of cellular flame instability in adiabatic CH4/O2/CO2 and CH4/air laminar premixed flames stabilized on a flat-flame burner. Combust. Flame, 160, 1276.
  • Zeldovich, Ya.B., and Frank-Kamenetsky, D.A. 1938. K teorii ravnomernogo rasprostraneniya plameni. Compt. Rend. Acad. Sci. USSR, 19, 693.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.