329
Views
10
CrossRef citations to date
0
Altmetric
Articles

Effects of Moisture Contents in the Common Oak on Carbonaceous Aerosols Generated from Combustion Processes in an Indoor Wood Stove

, &
Pages 982-996 | Received 06 Aug 2015, Accepted 22 Dec 2015, Published online: 16 May 2016

References

  • Andreae, M.O., and Merlet, P. 2001. Emission of trace gases and aerosols from biomass burning. Global Biogeochem. Cycles, 15, 955.
  • Bignal, K.L., Langridge, S., and Zhou, J.L. 2008. Release of polycyclic aromatic hydrocarbons, carbon monoxide and particulate matter from biomass combustion in a wood-fired boiler under varying boiler conditions. Atmos. Environ., 42(39), 8863.
  • Bølling, A.K., Pagels, J., Yttri, K.E., Barregard, L., Sallsten, G., Schwarze, P.E., and Boman, C. 2009. Health effects of residential wood smoke particles: The importance of combustion conditions and physicochemical particle properties. Part. Fibre Toxicol., 6, 29.
  • Bond, T.C., Streets, D.G., Yarber, K.F., Nelson, S.M., Woo, J.-H., and Klimon, Z. 2004. A technology-based global inventory of black and organic carbon emissions from combustion. J. Geophys. Res. Atmos., 109, D14203.
  • Bruce, N., Perez-Padilla, R., and Albalak, R. 2000. Indoor air pollution in developing countries: A major environmental and public health challenge. Bull. World Health Org., 78(9), 1078.
  • Buonanno, G., Stabile, L., Morawska, L., and Russi, A. 2013. Children exposure assessment to ultrafine particles and black carbon: The role of transport and cooking activities. Atmos. Environ., 79, 53.
  • Chomanee, J., Tekasakul, S., Tekasakul, P., Furuuchi, M., and Otani, Y. 2009. Effects of moisture content and burning period on concentration of smoke particles and particle-bound polycyclic aromatic hydrocarbons from rubber-wood combustion. Aerosol Air Qual. Res., 9(4), 404.
  • Cohen, J.B., and Wang, C. 2014. Estimating global black carbon emissions using a top-down Kalman filter approach. J. Geophys. Res. Atmos., 119, 307.
  • Cooper, J.A. 1980. Environmental impact of residential wood combustion emissions and its implications. J. Air Pollut. Control Assoc., 30, 855.
  • Demirbas, A. 1997. Calculation of higher heating values of biomass fuels. Fuel, 76, 431.
  • Desert Research Institute (DRI). 2005. Division of Atmospheric Sciences. DRI standard operating procedure—DRI Model 2001 Thermal/Optical Carbon Analysis (TOR/TOT) of Aerosol Filter Samples—Method IMPROVE_A. DRI SOP #2-216.1. Available at: http://vista.cira.colostate.edu/improve/publications/SOPs/DRI_SOPs/2005/2-216r1_IMPROVEA_20051115.pdf.
  • Goncalves, C., Alves, C., and Pio, C. 2012. Inventory of fine particulate organic compound emissions from residential wood combustion in Portugal. Atmos. Environ., 50, 297.
  • Grandesso, E., Gullet, B., Touati, A., and Tabor, D. 2011. Effect of moisture, charge size, and chlorine concentration on PCDD/F emissions from simulated open burning of forest biomass. Environ. Sci. Technol., 45(9), 3887.
  • Hansson, H.C., Johansson, C., Nyqvist, G., Kindbom, K., Åström, S., and Moldanovna, J. 2011. Black carbon—Possibilities to reduce emissions and potential effects. ITM report number 202. Available at: http://slb.nu/slb/rapporter/pdf8/itm2011_202.pdf.
  • Houck, J.E., and Tiegs, P.E. 1998. Residential wood combustion technology review. U.S. Environmental Protection Agency. Technical report EPA-600/R-98-174a. Available at: http://www.epa.gov/ttnchie1/ap42/ch01/related/woodstove.pdf.
  • Hubbard, A.J. 1995. Hazardous air emissions potential from a wood-fired furnace. Combust. Sci. Technol., 108(4–6), 297–309.
  • Jacobson, M.Z. 2002. Control of fossil-fuel particulate black carbon and organic matter, possibly the most effective method of slowing global warming. J. Geophys. Res. Atmos., 107(D19), ACH16-1.
  • Jenkins, B.M., and Ebeling, J.M. 1985. Correlation of physical and chemical properties of terrestrial biomass with conversion. In D.L. Klass (Ed.), Symposium on Energy From Biomass and Waste IX, Lake Buena Vista, Florida, January 28–February 1, Institute of Gas Technology, Chicago, IL, p. 271.
  • Jerneck, A., and Olsson, L. 2013. A smoke-free kitchen: initiating community based co-production for cleaner cooking and cuts in carbon emissions. J. Cleaner Prod., 60, 208.
  • Kim, K.-H., Jahan, S.A., and Kabir, E. 2011. A review of diseases associated with household air pollution due to the use of biomass fuels. J. Hazard. Mater., 192(2), 425–431.
  • Korenaga, T., Liu, X., and Huang, Z. 2001. The influence of moisture content on polycyclic aromatic hydrocarbons emission during rice straw burning. Chemosphere, 3, 117–122.
  • Lee, D.G., Lee, Y.M., Jang, K.W., Yoo, C., Kang, K.H., Lee, J.H., Jung, S.W., Park, J.M., Lee, S.B., Han, J.S., Hong, J.H., and Lee, S.J. 2011. Korean national emissions inventory system and 2007 air pollutant emissions. Asian J. Atmos. Environ., 5(4), 278.
  • Lee, J.S., and Park, J.Y. 2010. Wood properties and residual creosote oil of disused railway wood ties. Can. J. Agr. Sci., 37, 465.
  • Lee, S.K., Jeon, E.C., Park, S.K., and Choi, S.J. 2013. Characteristics of greenhouse gas emission from charcoal kiln. Clim. Change Res., 4, 115.
  • Li, X., Wang, S., Duan, L., Hao, J., and Nie, Y. 2009. Carbonaceous aerosol emissions from household biofuel combustion in China. Environ. Sci. Technol., 43, 6076.
  • Liang, L., Sun, R., Fei, J., Wu, S., Liu, X., Dai, K., and Yao, N. 2008. Experimental study on effects of moisture content on combustion characteristics of simulated municipal solid wastes in a fixed bed. Bioresour. Technol., 99, 7238.
  • Lichty, L.C., and Brown, B.L. 1931. Thermodynamics of difference between gross and net heating values, solid and liquid fuels. Ind. Eng. Chem., 23, 1419.
  • Lu, H., Zhu, L.Z., and Zhu, N. 2009. Polycyclic aromatic hydrocarbon emission from straw burning and the influence of combustion parameters. Atmos. Environ., 43(4) 978.
  • MacCarty, N., Ogle, D., Still, D., Bond, T., and Roden, C. 2008. A laboratory comparison of the global warming impact of five major types of biomass cooking stoves. Energy Sustainable Dev., 12(2), 56.
  • Malla, S., and Timilsina, G.R. 2014. Household cooking fuel choice and adoption of improved cookstoves in developing countries: A review. Policy Research working paper WPS 6903. World Bank Group, Washington, DC. Available at: http://documents.worldbank.org/curated/en/2014/05/19611186/household-cooking-fuel-choice-adoption-improved-cookstoves-developing-countries-review
  • Minjares, R., Blumberg, K., and Sanchez, F.P. 2013. Alignment of policies to maximize the climate benefits of diesel vehicles through control of particulate matter and black carbon emissions. Energy Policy, 54, 54.
  • Naeher, L.P., Brauer, M., Lipsett, M., Zelikoff, J.T., Simpson, C.D., Koenig, J.Q., and Smith, K.R. 2007. Woodsmoke health effects: A review. Inhalation Toxicol., 19, 67.
  • Panicker, A.S., Park, S.H., Lee, D.I., Kim, D.C., Jung, W.S., Jang, S.M., Jeong, J.H., Kim, D.S., Yu, J., and Jeong, H. 2013. Observations of black carbon characteristics and radiative forcing over a global atmosphere watch supersite in Korea. Atmos. Environ., 77, 98.
  • Parashar, D.C., Gadi, R., Mandal, T.K., and Mitra, A.P. 2005. Carbonaceous aerosol emissions from India. Atmos. Environ., 39, 7861.
  • Park, S.K., Choi, S.J., Kim, J.Y., Park, G.J., Hwang, U.H., Lee, J.J., and Kim, T.S. 2013. A field survey on the characteristics of air pollutants emission from commercial charcoal kiln. J. Korean Soc. Atmos. Environ., 29, 601.
  • Petzold, A., Kuhn, M., and Hoell, C. 1998. Characteristics of black carbon emission by air traffic. J. Aerosol Sci., 29, S559.
  • Ramanathan, V., and Carmichael, G. 2008. Global and regional climate changes due to black carbon. Nat. Geosci., 1, 221.
  • Roden, C.A., Bond, T.C., Conway, S., and Pinel, A.B.O. 2006. Emission factors and real-time optical properties of particles emitted from traditional wood burning cookstoves. Environ. Sci. Technol., 40(21), 6750.
  • Schembari, A., Triguero-Mas, M., de Nazelle, A., Dadvand, P., Vrijheid, M., Cirach, M., Martinez, D., Figueras, F., Querol, X., Basagaña, X., Eeftens, M., Meliefste, K., and Nieuwenhuijsen, M.J. 2013. Personal, indoor and outdoor air pollution levels among pregnant women. Atmos. Environ., 64, 287.
  • Sens, P.F. 1993. Strategies for future R&D in combustion processes. Combust. Sci. Technol., 93( 1), 1.
  • Shen, G.F., Tao, S., Wei, S., Zhang, Y., Wang, R., Wang, B., Li, W., Shen, H., Huang, Y., Chen, Y., Chen, H., Yang, Y., Wang, W., Wang, X., Liu, W., and Simonich, S.L.M. 2012b. Emissions of parent, nitro, and oxygenated polycyclic aromatic hydrocarbons form residential wood combustion in rural China. Environ. Sci. Technol., 46(15), 8123.
  • Shen, G.F., Wei, S., Wei, W., Zhang, Y., Min Y., Wang, B., Wang, R., Li, W., Shen, H., Huang, Y., Yang, Y., Wang, W., Wang, X., Wang X., and Tao, S. 2012a. Emission factors, size distributions, and emission inventories of carbonaceous particulate matter from residential wood combustion in rural China. Environ. Sci. Technol., 46(7), 4207.
  • Shen, G.F., Xue, M., Wei, S., Chen, Y., Zhao, Q., Li, B., Wu, H., and Tao, S. 2013. Influence of fuel moisture, charge size, feeding rate and air ventilation conditions on the emissions of PM, OC, EC, parent PAHs, and their derivatives from residential wood combustion. J. Environ. Sci., 25(9), 1808.
  • Shen, G.F., Yang, Y.F., Wang, W., Tao, S., Zhu, C., Min, Y.J., Xue, M., Ding, J., Wang, B., Wang, R., Shen, H., Li, W., Wang, X., and Russell, A.G. 2010. Emission factors of particulate matter and elemental carbon for crop residues and coals burned in typical household stoves in China. Environ. Sci. Technol., 44(18), 7157.
  • Simoneit, B.R.T. 2002. Biomass burning—A review of organic tracers for smoke from incomplete combustion. Appl. Geochem., 17(3), 129.
  • Skok, P., and Rimar, M. 2012. The combustion of wet woodchips. Manuf. Ind. Eng., 11(3), 57.
  • Stabile, L., Fuoco, F.C., and Buonanno, G. 2012. Characteristics of particles and black carbon emitted by combustion of incenses, candles and anti-mosquito products. Build. Environ., 56, 184.
  • Telmo, C., and Lousada, J. 2011. Heating values of wood pellets from different species. Biomass Bioenerg., 35, 2634.
  • U.S. Environmental Protection Agency (EPA). 2000. Method 5G: Determination of particulate matter emissions from wood heaters (dilution tunnel sampling location). U.S. Environmental Protection Agency, Washington, DC. Available at: http://www.epa.gov/ttnemc01/promgate/m-05g.pdf.
  • U.S. Environmental Protection Agency (EPA). 2010. Methods for measurement of filterable PM10 and PM2.5 and measurement of condensable PM emissions from stationary sources: Final rule. 40 CFR Part 51. 80118 Federal Register No. 244, 75. U.S. Environmental Protection Agency, Washington, DC. Available at: http://www.epa.gov/ttnemc01/promgate/m-201a.pdf.
  • Vamvuka, D., Sfakiotakis, S., Mourouzidis, T., and Bandelis, G. 2011. Development of a biomass-fired combustion unit for residential heating. Combust. Sci. Technol., 183(8), 764.
  • Venkataraman, C., Habib, G., Eiguren-Fernandez, A., Miguel, A.H., and Friedlander, S.K. 2005. Residential biofuels in South Asia: Carbonaceous aerosol emissions and climate impacts. Science, 307, 1454.
  • Xiao, Q., Saikawa, E., Yokelson, R.J., Chen, P., Li, C., and Kang, S. 2015. Indoor air pollution from burning yak dung as a household fuel in Tibet. Atmos. Environ., 102, 406.
  • Yi, C.Y., Choi, B.S., Sa, J.H., Jeon, E.-C., Choi, S.J., and Park, S.K. 2013. Emission characteristics of black carbons generated by wood combustion through a stove. Clim. Change Res., 4, 41.
  • Yuntenwi, E.A.T., MacCarty, N., Still, D., and Ertel, J. 2008. Laboratory study of the effects of moisture content on heat transfer and combustion efficiency of three biomass cook stoves. Energy Sustainable Dev., 12(2), 66.
  • Zhao, W., Li, Z., Zhao, G., Zhang, F., and Zhu, Q. 2008. Effect of air preheating and fuel moisture on combustion characteristics of corn straw in a fixed bed. Energy Convers. Manage., 49(12), 3560.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.