489
Views
10
CrossRef citations to date
0
Altmetric
Articles

Direct Numerical Simulations of Dual-Fuel Non-Premixed Autoignition

, &
Pages 542-555 | Received 27 Oct 2014, Accepted 24 Nov 2015, Published online: 04 May 2016

References

  • Abramzon, B., and Sirignano, W.A. 1989. Droplet vaporization model for spray combustion calculations. Int. J. Heat Mass Transfer, 32, 1605–1618.
  • Amjad, A., Saray, R.K., Mahmoudi, S., and Rahimi, A. 2011. Availability analysis of n-heptane and natural gas blends in hcci engines. Energy, 36, 6900–6909.
  • Batchelor, G., and Townsend, A. 1948. Decay of turbulence n the final period. Proc. R. Soc. London, Ser. A, 194, 527–543.
  • Borghesi, G. 2012. Autoignition in turbulent two-phase flows. PhD thesis. Unversity of Cambridge, United Kingdom.
  • Borghesi, G., Mastorakos, E., and Cant, R.S. 2013. Complex chemistry chemistry DNS of n-heptane sprays at high pressure and intermediate temperature conditions. Combust. Flame, 160, 1254–1275.
  • Borghesi, G., Mastorakos, E., Devaud, C., and Bilger, R. 2011. Modeling evaporation effects in conditional moment closure for spray autoignition. Combust. Theor. Modell., 15, 725–752.
  • Brown, P., Byrne, G., and Hindmarsh, A. 1989. Vode: A variable coefficient ode solver. J. Sci. Stat. Comput., 10, 1038–1051.
  • Ciezky, H., and Adomeit, G. 1993. Shock-tube investiation of self ignition of n-heptane-air mixtures under engine-relavant conditions. Combust. Flame, 93, 421–433.
  • Demosthenous, E., Borghesi, G., Mastorakos, E., and Cant, R.S. 2016. Direct numerical simulations of premixed methane flame initiation by pilot n-heptane spray autoignition. Combust. Flame, 163, 122–137.
  • Dunstan, T., and Jenkins, K. 2009. The effect of hydrogen substitution on turbulent premixed methane-air kernels usng diract numerical simulation. Int. J. Hydrogen Energy, 34, 8389–8404.
  • Han, X., Zheng, M., and Wang, J. 2013. Fuel suitability in low temperature combustion in compression ignition engines. Fuel, 109, 336–349.
  • Iida, N., Nakamura, M., and Ohashi, H. 1997. Study of diesel spray combustion in an ambient gas containing hydrocarbon using a rapid compression machine. SAE Paper 970899.
  • Jenkins, K.W., and Cant, R.S. 1999. Direct numerical simulation of turbulent flame kernels. Paper presented at the 2nd AFOSR International Conference on DNS and LES, Rutgers University, New Brunswick, NJ.
  • Kennedy, C., and Carpenter, M. 1994. Several new numerical methods for compressible shear-layer simulations. Appl. Numer. Math., 14, 397–433.
  • Kennedy, C., Carpenter, M., and Lewis, R. 2000. Low-storage, explicit Runge–Kutta schemes for compressible Navier–Stokes equations. Appl. Numer. Math., 35, 177–219.
  • Knio, O.M., Najm, H.N., and Wyckoffy, P.S. 1999. A semi-implicit numerical scheme for reacting flow. II: Stiff, operator-split formulation. J. Comput. Phys., 154, 428–467.
  • Korakianitis, T., Namasivayam, A., and Crookes, R. 2011. Natural-gas fuelled spark-ignition (si) and compression-ignition (ci) engine performance and emissions. Prog. Energy. Combust. Sci., 37, 89–112.
  • Lee, C.S., Lee, K.H., and Kim, D.S. 2003. Experimental and numerical study on the combustion characteristics of partially premixed charge compression ignition engine with dual fuel. Fuel, 82, 553–560.
  • Liu, S., Hewson, J.C., Chen, J.H., and Pitsch, H. 2004. Effect of strain rate on high-pressure non-premixed n-heptane autoignition in counterflow. Combust. Flame, 137, 320–339.
  • McTaggart-Cowan, G.P., Jones, H.L., Rogak, S.N., Bushe, W.K., Hill, P.G., and Munshi, S.R. 2007. The effects of high-pressure injection on a compressionignition, direct injection of natural gas engine. J. Eng. Gas Turbines Power, 129, 579–588.
  • McTaggart-Cowan, G.P., Rogak, S.N., Munshi, S., Hill, P., and Bushe, W.K. 2010. The influence of fuel composition on a heavy-duty, natural-gas direct-injection engine. Fuel, 89, 752–759.
  • Najm, H.N., Wyckoff, P.S., and Knio, O.M. 1998. A semi-implicit numerical scheme for reacting flow. I: Stiff chemistry. J. Comput. Phys., 143, 381–402.
  • Neophytou, A., Mastorakos, E., and Cant, R.S. 2011. Complex chemistry simulations of spark ignition in turbulent sprays. Proc. Combust. Inst., 33, 2135–2142.
  • Neophytou, A., Mastorakos, E., and Cant, R.S. 2012. The internal structure of igniting turbulent sprays as revealed by complex chemistry DNS. Combust. Flame, 159, 641–664.
  • Papagiannakis, R., and Hountalas, D. 2004. Combustion and exhaust emission characteristics of a dual fuel compression ignition engine operated with a pilot diesel fuel and natural gas. Energy Convers. Manage., 45, 2971–2987.
  • Reitz, R. 2013. Directions in internal combustion engine research. Combust. Flame, 160, 1–8.
  • Rotexo-Softpredict-Cosilab. 2009. GmbH and Co. KG Bad Zwischenahn (Germany), Cosilab Collection, Version 3.0. Available at: www.SoftPredict.com.
  • Schlatter, S., Schneider, B., Wright, Y.M., and Boulouchos, K. 2012. Experimental study of ignition and combustion characteristics of a diesel pilot spray in a lean premixed methan/air charge using a rapid compression expansion machine. SAE Paper 010825.
  • Srinivasan, K.K., Krishnan, S.R., Qi, Y., Midkiff, K.C., and Yang, H. 2007. Analysis of diesel pilot-ignited natural gas low-temperature combustion with hot exhaust gas recirculation. Combust. Sci. Technol., 179, 1737–1776.
  • Wright, Y.M., Margari, O., Boulouchos, K., De-Paola, G., and Mastorakos, E. 2010. Experiments and simulations of n-heptane spray auto-ignition in a closed combustion chamber at diesel engine conditions. Flow Turbul. Combust., 84, 49–78.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.