265
Views
7
CrossRef citations to date
0
Altmetric
Articles

Numerical and Experimental Study of General Gas Diffusion Equation Within Fractal Pores

&
Pages 1073-1094 | Received 23 May 2014, Accepted 04 Feb 2016, Published online: 24 Feb 2016

References

  • Anthony, D.B., Howard, J.B., Hottel., H.C., and Meissner, H.P. 1975. Rapid devolatilization of pulverized coal. Symp. (Int.) Combust., 15, 1303–1317.
  • Barranco, R., Rojas, A., Barraza, J., and Lester, E. 2009. A new char combustion kinetic model 1. Formulation. Fuel, 88, 2335–2339.
  • Bhatia, S.K., and Perlmutter, D.D. 1981. A random pore model for fluid-solid reactions: II. Diffusion and transport effects. AIChE J., 27, 247.
  • Cai, J.C., Perfect, E., Cheng, C.L., and Hu, X. 2014. Generalized modeling of spontaneous imbibition based on Hagen−Poiseuille flow in tortuous capillaries with variably shaped apertures. Langmuir, 30, 5142–5151.
  • Cai, J.C., Yu, B., Zou, M., and Luo, L. 2010. Fractal characterization of spontaneous co-current imbibition in porous media. Energy Fuels, 24, 1860–1867.
  • Cao, L., and He, R. 2010. Gas diffusion in fractal porous media. Combust. Sci. Technol., 182, 822.
  • Chen, Y., and He, R. 2011. Fragmentation and diffusion model for coal pyrolysis. J. Anal. Appl. Pyrolysis, 90, 72.
  • Chen, Y., Ma, L., and He, R. 2014. Development of improved lattice fragmentation and diffusion model for coal pyrolysis, Part 1: Steady-state intra-porous gas diffusivity. Combust. Sci. Technol., 18(6), 747.
  • Costa, M.H.A.S., Araujo, A.D., Da Silva, H.F., and Andrade Jr., J.S. 2003. Scaling behavior of diffusion and reaction processes in percolating porous media. Phys. Rev. E, 67, 061406.
  • Dullien, F.A. 1979. Porous Media: Fluid Transport and Pores Structures, Academic Press, New York.
  • Essenhigh, R.H. 1981. Fundamentals of coal combustion. In M. Ellinor (Ed.), Chemistry of Coal Utilization: Second Supplementary Volume, John Wiley & Sons, New York, Chap. 19.
  • Fortsch, D., Essenhigh, R.H., and Schnell, U. 2003. On the application of the Thiele/Zeldovich analysis to porous carbon combustion. Energy Fuels, 17, 901.
  • Giona, M., and Roman, H.E. 1992. Fractional diffusion equation for transport phenomena in random media. Physica A, 185, 87.
  • Havlin, S., and Ben-Avraham, D. 1987. Diffusion in disordered media. Adv. Phys., 36(6), 695.
  • Havlin, S., Ben-Avraham, D., and Sompolinsky, H. 1983. Scaling behavior of diffusion on percolation clusters. Phys. Rev. A, 27, 1730.
  • He, W., He, R., Cao, L., Ito, T., Suda, T., and Sato, J. 2012. Numerical study of the relationships between pore structures and reaction parameters for coal char particles. Combust. Sci. Technol., 184, 2084.
  • He, W., Liu, Y., He, R., Ito, T., Suda, T., Fujimori, T., Ikeda, H., and Sato, J.I. 2013. Combustion rate for char with fractal pore characteristics. Combust. Sci. Technol., 185, 1624–1643.
  • He, R., Xu, X., Chen, C., Fan, H., and Zhang, B. 1998. Evolution of pore fractal dimensions for burning porous chars. Fuel, 77, 1291.
  • Huizenga, D.G., and Smith, D.M. 1986. Knudsen diffusion in random assemblages of uniform spheres. AIChE J., 32, 1.
  • Jeans, J. 1952. An Introduction to the Kinetic Theory of Gases, Cambridge University Press, Cambridge, UK.
  • Jeon, J.H., Chechkin, A.V., and Metzler, R. 2014. Scaled Brownian motion: A paradoxical process with a time dependent diffusivity for the description of anomalous diffusion. Phys. Chem. Chem. Phys., 16, 15811–15817.
  • Katz, A.J., and Thompson, A.H. 1985. Fractal sandstone pores: Implications for conductivity and pore formation. Phys. Rev. Lett., 54, 1325.
  • Liang, Z., He, R., Chen, Q., Xu, X., and Sato, J. 2007. Fractal generation of char pores through random walk. Combust. Sci. Technol., 179, 637.
  • Liu, Y., and He, R. 2015. Variation of apparent reaction order in char combustion and its effect on a fractal char combustion model. Combust. Sci. Technol., 187, 1638–1660.
  • Liu, Y., and He, R. 2016. Modeling of the pore structure evolution in porous char particles during combustion. Combust. Sci. Technol., 188, 207–232.
  • Ma, L., and Mitchell, R. 2009. Modeling char oxidation behavior under Zone II burning conditions at elevated pressures. Combust. Flame, 156, 37.
  • Mandelbrot, B.B. 1983. The Fractal Geometry of Nature, 3rd ed., W. H. Freeman and Company, New York.
  • Nakano, A., Bi, L., Kalia, R.K., and Vashishta, P. 1994. Molecular-dynamics study of the structural correlation of porous silica with use of a parallel computer. Phys. Rev. B, 49, 9441.
  • Niksa, S., and Kerstein, A.R. 1991. FLASHCHAIN theory for rapid coal devolatilization kinetics. 1. Formulation. Energy Fuels, 5, 647–665.
  • O’Shaughnessy, B., and Procaccia, I. 1985a. Analytical solutions for diffusion on fractal objects. Phys. Rev. Lett., 54(5), 455.
  • O’Shaughnessy, B., and Procaccia, I. 1985b. Diffusion on fractals. Phys. Rev. A, 32, 3073.
  • Pfeifer, P., and Avnir, D. 1983. Chemistry in noninteger dimensions between two and three. I. Fractal theory of heterogeneous surfaces. J. Chem. Phys., 79, 3558.
  • Rojas, A., Barraza, J., Barranco, R., and Lester, E. 2012. A new char combustion kinetic model—Part 2: Empirical validation. Fuel, 96, 168–175.
  • Roman, H.E., and Giona, M. 1992. Fractional diffusion equation on fractals: Three-dimensional case and scattering function. J. Phys. A: Math. Gen., 25, 2107.
  • Salatino, P., and Zimbardi, F. 1994. A fractal approach to the analysis of low temperature combustion rate of a coal char. II: Model development. Carbon, 32, 51.
  • Satterfield, C.N. 1970. Mass Transfer in Heterogeneous Catalysis, M.I.T. Press, Cambridge, MA.
  • Satterfield, C.N., and Cadle, P.J. 1968. Diffusion in commercially manufactured pelleted catalysts. Ind. Eng. Chem. Process Des. Dev., 7, 256.
  • Smith, I.W. 1982. The combustion rates of coal chars: A review. Symp. (Int.) Combust., 19, 1045.
  • Solomon, P.R., Hamblen, D.G., Carangelo, R.M., Serio, M.A., and Deshpanda, G.V. 1988. General model of coal devolatilization. Energy Fuels, 2, 405–422.
  • Stephenson, J. 1995. Some non-linear diffusion equations and fractal diffusion. Physica A, 222, 234.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.