420
Views
5
CrossRef citations to date
0
Altmetric
Articles

Combustion of Lithium Particles in N2—Reaction Rates

, , , &
Pages 169-186 | Received 19 Aug 2015, Accepted 27 May 2016, Published online: 21 Dec 2016

References

  • Addison, C.C., and Davies, B.M. 1969. Reaction of nitrogen with stirred and unstirred liquid lithium. J. Chem. Soc. A, 1822, 1822.
  • Bale, C.W., Bélisle, E., Chartrand, P., Decterov, S.A., Eriksson, G., Hack, K., Jung, I.H., Kang, Y.B., Melançon, J., Pelton, A.D., Robelin, C., and Petersen, S. 2009. FactSage thermochemical software and databases—Recent developments. Calphad, 33(2), 295–311.
  • Barnett, D.S., and Kazimi, M.S. 1989. The consequences of lithium fires in the presence of steam. Fusion Technol., 15(2), 839–846.
  • Bazyn, T., Krier, H., and Glumac, N. 2007. Evidence for the transition from the diffusion-limit in aluminum particle combustion. Proc. Combust. Inst., 31(2), 2021–2028.
  • Beach, D.B., Rondinone, A.J., Sumpter, B.G., Labinov, S.D., and Richards, R.K. 2007. Solid-state combustion of metallic nanoparticles: New possibilities for an alternative energy carrier. J. Energy Res. Technol., 129(1), 29.
  • Bergthorson, J.M., Goroshin, S., Soo, M.J., Julien, P., Palecka, J., Frost, D.L., and Jarvis, D.J. 2015. Direct combustion of recyclable metal fuels for zero-carbon heat and power. Appl. Energy, 160, 368–382.
  • Bojko, B.T., DesJardin, P.E., and Washburn, E.B. 2014. On modeling the diffusion to kinetically controlled burning limits of micron-sized aluminum particles. Combust. Flame, 161(12), 3211–3221.
  • Brooks, K.P., and Beckstead, M.W. 1995. Dynamics of aluminum combustion. J. Propul. Power, 11(4), 769–780.
  • Chase, M.W. 1998. NIST-JANAF Thermochemical Tables, 4th ed., American Institute of Physics, Woodbury, NY.
  • Cheburkov, V.I., and Rozanov, A.N. 1968. Kinetics of reaction of liquid lithium with oxygen and nitrogen. Metalloyedenie Christyky Metallov, 7, 168–173.
  • Davison, H.W. 1968. Compilation of Thermophysical Properties of Liquid Lithium, Clearinghouse for Federal Scientific and Technical Information, Cleveland, OH.
  • Davydov, D.A., Kholopova, O.V., and Kolbasov, B.N. 2007. Some characteristics of fine beryllium particle combustion. J. Nucl. Mater., 370, 1079–1084.
  • Dreizin, E.L., and Schoenitz, M. 2015. Correlating ignition mechanisms of aluminum-based reactive materials with thermoanalytical measurements. Prog. Energy Combust. Sci., 50, 81–105.
  • Eckert, H., et al. 2015. Conversion of metal carbonate to metal chloride. WO2015121192A1. Available at: http://www.google.com/patents/WO2015121192A1?cl=en.
  • Fischer, P., Schiemann, M., Scherer, V., Maas, P., Schmid, G., and Taroata, D. 2015a. A numerical model of the combustion of single lithium particles with CO2. Fuel, 160, 87–99.
  • Fischer, P., Schiemann, M., Scherer, V., Maas, P., Schmid, G., and Taroata, D. 2015b. Experimental characterization of the combustion of single lithium particles with CO2. Fuel, 153, 90–101.
  • Fischer, P., Schiemann, M., Scherer, V., Schmid, G., and Taroata, D. 2015c. Experimental study on the combustion of lithium particles in CO2 and CO2-N2 mixtures. In Proceedings of the 7th European Combustion Meeting, pp. 1–6.
  • Fischer, P., Schiemann, M., Scherer, V., Taroata, D., and Schmid, G. 2015d. Determination of reaction kinetics of combusting lithium particles in CO2 and CO2-N2 mixtures. In 9th U.S. National Combustion Meeting, pp. 1–10.
  • Gardner, M.P., and Altermatt, R.E. 1983. Kinetics of the reaction of hydrogen and nitrogen with molten lithium. In Lithium: Current Applications in Science, Medicine, and Technology, R.O. Bach, Ed., Wiley-Interscience, Charlotte, NC, pp. 195–206.
  • Gardner, M.P., and Nishina, M.M., 1981. Kinetics of the reactions of hydrogen, nitrogen, and hydrogen/nitrogen mixtures with molten lithium. J. Phys. Chem., 85(16), 2388–2392.
  • Glassmann, I., and Yetter, R. 2008. Combustion, 4th ed., Elsevier Inc., Amsterdam, the Netherlands.
  • Goroshin, S., Mamen, J., Higgins, A., Bazyn, T., Glumac, N., and Krier, H. 2007. Emission spectroscopy of flame fronts in aluminum suspensions. Proc. Combust. Inst., 31(2), 2011–2019.
  • Jeppson, D.W., Ballif, J.L., and Chou, B.E. 1970. Lithium Literature Review: Lithium’s Properties and Interactions, Hanford Engineering Development Laboratory, Richmond, WA.
  • Julien, P., Vickery, J., Goroshin, S., Frost, D.L., and Bergthorson, J.M. 2015a. Freely-propagating flames in aluminum dust clouds. Combust. Flame, 162(11), 4241–4253.
  • Julien, P., Whiteley, S., Goroshin, S., Soo, M.J., Frost, D.L., and Bergthorson, J.M. 2015b. Flame structure and particle-combustion regimes in premixed methane–iron–air suspensions. Proc. Combust. Inst., 35(2), 2431–2438.
  • Kellermann, R., Taroata, D., Schiemann, M., Eckert, H., Fischer, P., Scherer, V., Hock, R., and Schmid, G. 2014. Reaction products in the combustion of the high energy density storage material lithium with carbon dioxide and nitrogen. MRS Proc., 1644.
  • Khatami, R., Stivers, C., and Levendis, Y.A. 2012. Ignition characteristics of single coal particles from three different ranks in O2/N2 and O2/CO2 atmospheres. Combust. Flame, 159(12), 3554–3568.
  • King, M.K. 1976. Combustion Studies of Fuel-Rich Propellants, Atlantic Research Corporation, Alexandria, VA.
  • King, M.K. 1982. Ignition and combustion of boron particles and clouds. AIAA J., 19(4), 294–306.
  • King, M.K. 2002. A simplified two-reaction zone model of magnesium combustion in carbon dioxide. Proc. Combust. Inst., 29(2), 2931–2938.
  • King, M.K. 2007. Boron ignition and combustion in air-augmented rocket afterburners boron ignition and combustion in air-augmented. Combust. Sci. Technol., 5, 155–164.
  • Legrand, B., et al. 2001. Ignition and combustion of levitated magnesium and aluminum particles in carbon dioxide. Combust. Sci. Technol., 165(1), 151–174.
  • Markowitz, M.M. 1963. Alkali metal-water reactions. J. Chem. Educ., 40(12), 633–636.
  • Markowitz, M.M., and Boryta, D.A. 1962. Lithium metal-gas reactions. J. Chem. Eng. Data, 7(4), 586–591.
  • McFarlane, E.F., and Tompkins, F.C. 1962. Nitridation of lithium. Trans. Faraday Soc., 58, 997–1007.
  • Mellor, A.A., and Glassman, I. 1965. A physical criterion for metal ignition. Pyrodynamics, 3, 43–64.
  • Paul, P.H. 1997. DRFM: A New Package for the Evaluation of Gas-Phase Transport Properties, Sandia National Laboratories (SNL), Albuquerque, NM/Livermore, CA.
  • Rhein, R.A. 1964. The ignition of powdered metals in nitrogen and in carbon dioxide, Report 32-679, Jet Propulsion Laboratory, Pasadena, CA.
  • Rhein, R.A. 1967. The utilization of powdered metals as fuels in the atmospheres of Venus, Earth, and Mars, Report 32-1073, Jet Propulsion Laboratory, Pasadena, CA.
  • Rhein, R.A. 1990. Lithium Combustion: A Review, Naval Weapons Center, China Lake, CA.
  • Rosenberg, M., Smirnov, R.D., and Pigarov, A.Y. 2009. On thermal radiation from fusion related metals. Fusion Eng. Des., 84(1), 38–42.
  • Rossi, S., Dreizin, E.L., and Law, C.K. 2001. Combustion of aluminum particles in carbon dioxide. Combust. Sci. Technol., 164(1), 209–237.
  • Sangster, J., and Pelton, A.D. 1992. The Li-N (lithium-nitrogen) system. J. Phase Equilib. Diffus., 13(3), 291–296.
  • Schiemann, M., Fischer, P., Scherer, V., Schmid, G., and Taroata, D. 2014. Combustion of lithium particles: Optical measurement methodology and initial results. Chem. Eng. Technol., 37(9), 1600–1605.
  • Schiemann, M., Bergthorson, J., Fischer, P., Scherer, V., Taroata, D., and Schmid, G. 2016. A review on lithium combustion. Appl. Energy, 162, 948–965.
  • Schiemann, M., Scherer, V., and Wirtz, S. 2009. Optical coal particle temperature measurement under oxy-fuel conditions: Measurement methodology and initial results. Chem. Eng. Technol., 32(12), 2000–2004.
  • Shafirovich, E.I., Shiriaev, A., and Goldschleger, U.I. 1993. Magnesium and carbon dioxide—A rocket propellant for Mars missions. J. Propul. Power, 9(2), 197–203.
  • Shkolnikov, E.I., Zhuk, A.Z., and Vlaskin, M.S. 2011. Aluminum as energy carrier: Feasibility analysis and current technologies overview. Renewable Sustainable Energy Rev., 15(9), 4611–4623.
  • Soo, M., Julien, P., Goroshin, S., Bergthorson, J.M., and Frost, D.L. 2013. Stabilized flames in hybrid aluminum-methane-air mixtures. Proc. Combust. Inst., 34(2), 2213–2220.
  • Soo, M., Goroshin, S., Bergthorson, J.M., and Frost, D.L. 2015. Reaction of a particle suspension in a rapidly-heated oxidizing gas. Propellants Explos. Pyrotech., 40(4), 604–612.
  • Steinfeld, A., Kuhn, P., Reller, A., Palumbo, R., Murray, J., and Tamaura, Y. 1998. Solar-processed metals as clean energy carriers and water-splitters. Int. J. Hydrogen Energy, 23(9), 767–774.
  • Tang, F.D., Goroshin, S., Higgins, A., and Lee, J. 2009. Flame propagation and quenching in iron dust clouds. Proc. Combust. Inst., 32(II), 1905–1912.
  • Tang, F.D., Goroshin, S., and Higgins, A.J. 2011. Modes of particle combustion in iron dust flames. Proc. Combust. Inst., 33(2), 1975–1982.
  • Tavares, F.V., Monteiro, L.P.C., and Mainier, F.B. 2013. Indicators of energy efficiency in ammonia productions plants. Am. J. Eng. Res., 2(7), 116–123.
  • Trunov, M.A., Schoenitz, M., and Dreizin, E.L. 2006. Effect of polymorphic phase transformations in alumina layer on ignition of aluminium particles. Combust. Theor. Model., 10(4), 603–623.
  • Vlaskin, M.S., Shkolnikov, E.I., Bersh, A.V., Zhuk, A.Z., Lisicyn, A.V., Sorokovikov, A.I., and Pankina, Y.V. 2011. An experimental aluminum-fueled power plant. J. Power Sources, 196(20), 8828–8835.
  • Wang, H.Z., Leung, D.Y.C., Leung, M.K.H., and Ni, M. 2009. A review on hydrogen production using aluminum and aluminum alloys. Renewable Sustainable Energy Rev., 13(4), 845–853.
  • Wang, S., Corcoran, A.L., and Dreizin, E.L. 2014. Combustion of magnesium powders in products of an air/acetylene flame. Combust. Flame, 162(4), 1316–1325.
  • Wen, D. 2010. Nanofuel as a potential secondary energy carrier. Energy Environ. Sci., 3(5), 591.
  • Yabe, T., Uchida, S., Ikuta, K., Yoshida, K., Baasandash, C., Mohamed, M.S., Sakurai, Y., Ogata, Y., Tuji, M., Mori, Y., Satoh, Y., Ohkubo, T., Murahara, M., Ikesue, A., Nakatsuka, M., Saiki, T., Motokoshi, S., and Yamanaka, C. 2006. Demonstrated fossil-fuel-free energy cycle using magnesium and laser. Appl. Phys. Lett., 89(26), 261107.
  • Yavor, Y., Goroshin, S., Bergthorson, J.M., Frost, D.L., Stowe, R., and Ringuette, S. 2013. Enhanced hydrogen generation from aluminum-water reactions. Int. J. Hydrogen Energy, 38(35), 14992–15002.
  • Yavor, Y., Goroshin, S., Bergthorson, J.M., and Frost, D.L. 2015. Comparative reactivity of industrial metal powders with water for hydrogen production. Int. J. Hydrogen Energy, 40(2), 1026–1036.
  • Yeh, C.L., Hwang, P.W., Chen, W.K., and Li, J.Y. 2013. Modeling evaluation of Arrhenius factor and thermal conductivity for combustion synthesis of transition metal aluminides. Intermetallics, 39, 20–24.
  • Yetter, R.A., Risha, G.A., and Son, S.F. 2009. Metal particle combustion and nanotechnology. Proc. Combust. Inst., 32(2), 1819–1838.
  • Yonco, R.M., Veleckis, E., and Maroni, V.A. 1975. Solubility of nitrogen in liquid lithium and thermal decomposition of solid Li3N. J. Nucl. Mater., 57(3), 317–324.
  • Zong, Y., Jacob, R.J., Li, S., and Zachariah, M.R. 2015. Size resolved high temperature oxidation kinetics of nano-sized titanium and zirconium particles. J. Phys. Chem. A, 150427154300005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.