203
Views
4
CrossRef citations to date
0
Altmetric
Articles

Precession Effects on the Relationship Between Time-Averaged and Instantaneous Reacting Flow Characteristics

, , , &
Pages 248-265 | Received 03 Oct 2015, Accepted 24 Jun 2016, Published online: 06 Jul 2016

References

  • Arndt, C., Steinberg, A., Boxx, I., Meier, W., Aigner, M., and Carter, C. 2010. Flow-field and flame dynamics of a gas turbine model combustor during transition between thermo-acoustically stable and unstable states. Presented at the ASME Turbo Expo, Glasgow, UK, June 14–18.
  • Bendat, J.S., and Piersol, A.G. 2010. Random Data: Analysis and Measurement Procedures, Wiley, New York.
  • Candel, S., Durox, D., Schuller, T., and Palies, P. 2012. Progress and challenges in swirling flame dynamics. C.R. Mec., 340, 758–768.
  • Chterev, I., Foley, C.W., Foti, D., Kostka, S., Caswell, A.W., Jiang, N., Lynch, A., Noble, D.R., Menon, S., Seitzman, J.M., and Lieuwen, T. 2014. Flame and flow topologies in an annular swirling flow. Combust. Sci. Technol., 186, 1041–1074.
  • Day, M., Tachibana, S., Bell, J., Lijewski, M., Beckner, V., and Cheng, R.K. 2012. A combined computational and experimental characterization of lean premixed turbulent low swirl laboratory flames: I. Methane flames. Combust. Flame, 159, 275–290.
  • Emara, A., Lacarelle, A., and Paschereit, C. 2009. Planar investigation of outlet boundary conditions effect on isothermal flow fields of a swirl-stabilized burner. ASME Paper GT2009-59948. Presented at the ASME Turbo Expo, Orlando, FL, June 8–12.
  • Escudier, M. 1988. Vortex breakdown: Observations and explanations. Prog. Aerosp. Sci., 25, 189–229.
  • Faler, J.H., and Leibovich, S. 1977. Disrupted states of vortex fow and vortex breakdown. Phys. Fluids, 20, 1385–1400.
  • Faler, J.H., and Leibovich, S. 1978. An experimental map of the internal structure of a vortex breakdown. J. Fluid Mech., 86, 313–335.
  • Fanaca, D., Alemela, P.R., Hirsch, C., and Sattelmayer, T. 2010. Comparison of the flow field of a swirl stabilized premixed burner in an annular and a single burner combustion chamber. J. Eng. Gas Turbines Power, 132(7), 071502.
  • Hall, M.G. 1972. Vortex breakdown. Annu. Rev. Fluid Mech., 4, 195–218.
  • Huang, Y., and Yang, V. 2009. Dynamics and stability of lean-premixed swirl-stabilized combustion. Prog. Energy Combust. Sci., 35, 293–364.
  • Malanoski, M., Aguilar, M., Acharya, V., and Lieuwen, T. 2013. Dynamics of a transversely excited swirling, lifted flame. Part I: Experiments and data analysis. ASME Paper GT2013-95358. Presented at the ASME Turbo Expo, San Antonio, TX, June 3–7.
  • Malanoski, M., Aguilar, M., O’Connor, J., Shin, D., Noble, D.R., and Lieuwen, T. 2012. Flame leading edge and flow dynamics in a swirling, lifted flame. Presented at the ASME Turbo Expo, Copenhagen, Denmark, June 11–15.
  • Oberleithner, K., Sieber, M., Nayeri, C.N., Paschereit, C.O., Petz, C., Hege, H.-C., Noack, B.R., and Wygnanski, I. 2011. Three-dimensional coherent structures in a swirling jet undergoing vortex breakdown: Stability analysis and empirical mode construction. Fluid Mech., 679, 383–414.
  • Palies, P., Durox, D., Schuller, T., and Candel, S. 2010. The combined dynamics of swirler and turbulent premixed swirling flames. Combust. Flame, 157, 1698–1717.
  • Plessing, T., Kortschik, C., Peters, N., Mansour, M.S., and Cheng, R.K. 2000. Measurements of the turbulent burning velocity and the structure of premixed flames on a low-swirl burner. Int. Symp. Combust., 28(1), 359–366.
  • Pope, S.B. 2000. Turbulent Flows, Cambridge University Press, Cambridge, UK.
  • Qadri, U.A., Mistry, D., and Juniper, M.P. 2013. Structural sensitivity of spiral vortex breakdown. Fluid Mech., 720, 558–581.
  • Santhosh, R., Miglani, A., and Basu, S. 2013. Transition and acoustic response of recirculation structures in an unconfined co-axial isothermal swirling flow. Phys. Fluids, 25, 083603.
  • Santhosh, R., Miglani, A., and Basu, S. 2014. Transition in vortex breakdown modes in a coaxial isothermal unconfined swirling jet. Phys. Fluids, 26.
  • Sheen, H.J., Chen, W.J., and Jeng, S.Y. 1996. Recirculation zones of unconfined and confined annular swirling jets. AIAA J., 34, 572–579.
  • Steinberg, A., Boxx, I., Stöhr, M., Meier, W., and Carter, C. 2012. Effects of flow structure dynamics on thermoacoustic instabilities in swirl-stabilized combustion. AIAA J., 50.
  • Stöhr, M., Boxx, I., Carter, C.D., and Meier, W. 2012. Experimental study of vortex-flame interaction in a gas turbine model combustor. Combust. Flame, 159, 2636–2649.
  • Syred, N. 2006. A review of oscillation mechanisms and the role of the precessing vortex core (PVC) in swirl combustion systems. Prog. Energy Combust. Sci., 32, 93–161.
  • Terhaar, S., Oberleithner, K., and Paschereit, C.O. 2015. Key parameters governing the precessing vortex core in reacting flows: An experimental and analytical study. Proc. Combust. Inst., 35, 3347–3354.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.