532
Views
18
CrossRef citations to date
0
Altmetric
Articles

The Discrete Regime of Flame Propagation in Metal Particulate Clouds

, &
Pages 2178-2199 | Received 06 Nov 2015, Accepted 18 Apr 2016, Published online: 28 Oct 2016

References

  • Ballal, D. 1983. Flame propagation through dust clouds of carbon, coal, aluminium and magnesium in an environment of zero gravity. Proc. R. Soc. London, Ser. A, 385(1788), 21–51.
  • Beach, D., Rondinone, A., Sumpter, B., Labinov, S., and Richards, R. 2007. Solid-state combustion of metallic nanoparticles: New possibilities for an alternative energy carrier. J. Energy Resour. Technol., 129(1), 29.
  • Beck, J., and Volpert, V. 2003a. A simple model of two-dimensional solid flame microstructure. Combust. Theor. Model., 7(4), 795–812.
  • Beck, J., and Volpert, V. 2003b. Nonlinear dynamics in a simple model of solid flame microstructure. Physica D, 182(1–2), 86–102.
  • Beckstead, M. 2005. Correlating aluminum burning times. Combust. Explos. Shock Waves, 41(5), 533–546.
  • Bergthorson, J., Goroshin, S., Soo, M., Julien, P., Palecka, J., Frost, D., and Jarvis, D. 2015. Direct combustion of recyclable metal fuels for zero-carbon heat and power. Appl. Energy, 160, 368–382.
  • Berlad, A., Tangirala, V., Ross, H., and Facca, L. 1990. Particle cloud flames in acoustic fields. Combust. Flame, 82(3), 448–450.
  • Clanet, C., Searby, G., and Clavin, P. 1999. Primary acoustic instability of flames propagating in tubes: Cases of spray and premixed gas combustion. J. Fluid Mech., 385, 157–197.
  • Clavin, P., and Sun, J. 1991. Theory of acoustic instabilities of planar flames propagating in sprays or particle-laden gases. Combust. Sci. Technol., 78(4–6), 265–288.
  • Dawson, S., Keizer, J., and Pearson, J. 1999. Fire-diffuse-fire model of dynamics of intracellular calcium waves. Proc. Nat. Acad. Sci., 96(11), 6060–6063.
  • Dreizin, E. 1999. Experimental study of aluminum particle flame evolution in normal and micro-gravity. Combust. Flame, 116(3), 323–333.
  • Eckhoff, R. 2003. Dust Explosions in the Process Industries: Identification, Assessment and Control of Dust Hazards. Gulf Professional Publishing, Houston, TX.
  • Glassman, I., and Yetter, R. 2008. Combustion, 4th ed., Elsevier, Amsterdam, pp. 495–548.
  • Goroshin, S., Higgins, A.J., and Kamel, M. 2001. Powdered metals as fuel for hypersonic ramjets. AIAA Paper 2001–3919. Presented at the 37th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Salt Lake City, UT, July 8–11.
  • Goroshin, S., Higgins, A.J., and Lee, J.H.S. 1999. Powdered magnesium-carbon dioxide propulsion concepts for Mars missions. AIAA Paper 1999–2408. Presented at the 35th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Los Angeles, CA, July 20–24.
  • Goroshin, S., Lee, J., and Shoshin, Y. 1998. Effect of the discrete nature of heat sources on flame propagation in particulate suspensions. Symp. (Int.) Combust., 27(1), 743–749.
  • Goroshin, S., Shevchuk, V., and Ageev, N. 1981. Oscillatory combustion of gaseous suspensions. Combust. Explos. Shock Waves, 17(6), 595–600.
  • Goroshin, S., Tang, F., and Higgins, A. 2011a. Reaction-diffusion fronts in media with spatially discrete sources. Phys. Rev. E, 84(2), 27301.
  • Goroshin, S., Tang, F., Higgins, A., and Lee, J. 2011b. Laminar dust flames in a reduced-gravity environment. Acta Astronaut., 68(7–8), 656–666.
  • Hanai, H., Maruta, K., Kobayashi, H., and Niioka, T. 1998. Pulsating flame propagation of PMMA particle cloud in microgravity. Symp. (Int.) Combust., 27(2), 2675–2681.
  • Hepp, A.F., Linne, D.L., Landis, G.A., Wade, M.F., and Colvi, J.E. 1994. Production and use of metals and oxygen for lunar propulsion. J. Propul. Power, 10(6), 834–840.
  • Julien, P., Vickery, J., Goroshin, S., Frost, D., and Bergthorson, J. 2015. Freely-propagating flames in aluminum dust clouds. Combust. Flame, 162(11), 4241–4253.
  • Keizer, J., Smith, G., Ponce-Dawson, S., and Pearson, J. 1998. Saltatory propagation of Ca2+ waves by Ca2+ sparks. Biophys. J., 75(2), 595–600.
  • Landau, L., and Lifshitz, E. 1959. Fluid mechanics. In Course of Theoretical Physics, Vol. 6, Pergamon Press, Oxford, UK, pp. 474–478.
  • Law, C. 2006. Aerodynamics of laminar flames. In Combustion Physics, Cambridge University Press, Cambridge, UK, pp. 396–471.
  • Mason, W., and Saunders, K. 1975. Recirculating flow in vertical columns of gas-solid suspension. J. Phys. D: Appl. Phys., 8(14), 1674.
  • Merzhanov, A. 2004. The chemistry of self-propagating high-temperature synthesis. J. Mater. Chem., 14(12), 1779–1786.
  • Mitkov, I. 1999. One- and two-dimensional wave fronts in diffusive systems with discrete sets of nonlinear sources. Physica D, 133(1–4), 398–403.
  • Mukasyan, A., and Rogachev, A. 2008. Discrete reaction waves: Gasless combustion of solid powder mixtures. Prog. Energy Combust. Sci., 34(3), 377–416.
  • Nicoli, C., Haldenwang, P., and Suard, S. 2005. Analysis of pulsating spray flames propagating in lean two-phase mixtures with unity Lewis number. Combust. Flame, 143(C), 299–312.
  • Pearlman, H., and Ronney, P. 1994. Near-limit behavior of high-Lewis number premixed flames in tubes at normal and low gravity. Phys. Fluids, 6(12), 4009.
  • Peters, N. 1984. Laminar diffusion flamelet models in non-premixed turbulent combustion. Prog. Energy Combust. Sci., 10(3), 319–339.
  • Rogachev, A., and Mukasyan, A. 2015. Experimental verification of discrete models for combustion of microheterogeneous compositions forming condensed combustion products. Combust. Explos. Shock Waves, 51(1), 53–62.
  • Ronney, P. 2001. Premixed-gas flames. In H. Ross, (Ed.), Microgravity Combustion: Fire in Free Fall, Academic Press, London, pp. 35–82.
  • Searby, G. 1992. Acoustic instability in premixed flames. Combust. Sci. Technol., 81, 221–231.
  • Shafirovich, E., and Varma, A. 2008. Metal-CO2 propulsion for Mars missions: Current status and opportunities. J. Propul. Power, 24(3), 385–394.
  • Shkadinskii, K., Khaikin, B., and Merzhanov, A. 1971. Propagation of a pulsating exothermic reaction front in the condensed phase. Combust. Explos. Shock Waves, 7(1), 15–22.
  • Tang, F., Goroshin, S., and Higgins, A. 2011. Modes of particle combustion in iron dust flames. Proc. Combust. Inst., 33(2), 1975–1982.
  • Tang, F., Goroshin, S., Higgins, A., and Lee, J. 2009a. Flame propagation and quenching in iron dust clouds. Proc. Combust. Inst., 32(2), 1905–1912.
  • Tang, F., Higgins, A., and Goroshin, S. 2009b. Effect of discreteness on heterogeneous flames: Propagation limits in regular and random particle arrays. Combust. Theor. Model., 13(2), 319–341.
  • Tang, F., Higgins, A., and Goroshin, S. 2012. Propagation limits and velocity of reaction-diffusion fronts in a system of discrete random sources. Phys. Rev. E, 85(3), 036311.
  • Weber, R., Mercer, G., Sidhu, H., and Gray, B. 1997. Combustion waves for gases (Le = 1) and solids (Le → ∞). Proc. R. Soc. London, Ser. A, 453(1960), 1105–1118.
  • Wright, A., Goroshin, S., and Higgins, A. 2014. Discrete flame propagation under normal gravity conditions. Presented at the Canadian Section of the Combustion Institute Spring Technical Meeting, Windsor, Canada, May 12–15.
  • Zhang, J., Chen, H., Liu, Y., Elledge, H., Mashuga, C., and Mannan, S. 2015. Dust explosion of carbon nanofibers promoted by iron nanoparticles. Ind. Eng. Chem. Res., 54(15), 3989–3995.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.